An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
Abstract Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple fea...
Guardado en:
Autores principales: | Peng-fei Ke, Dong-sheng Xiong, Jia-hui Li, Zhi-lin Pan, Jing Zhou, Shi-jia Li, Jie Song, Xiao-yi Chen, Gui-xiang Li, Jun Chen, Xiao-bo Li, Yu-ping Ning, Feng-chun Wu, Kai Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd9b79389a23479cb148f4150335e9d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The gut microbiome is associated with brain structure and function in schizophrenia
por: Shijia Li, et al.
Publicado: (2021) -
Author Correction: The gut microbiome is associated with brain structure and function in schizophrenia
por: Shijia Li, et al.
Publicado: (2021) -
Construction of a Luminescent Cadmium-Based Metal–Organic Framework for Highly Selective Discrimination of Ferric Ions
por: Li-Li Xu, et al.
Publicado: (2021) -
Unifying information theory and machine learning in a model of electrode discrimination in cochlear implants.
por: Xiao Gao, et al.
Publicado: (2021) -
Geographic Origin Discrimination of Millet Using Vis-NIR Spectroscopy Combined with Machine Learning Techniques
por: Muhammad Hilal Kabir, et al.
Publicado: (2021)