A robust approach for industrial small-object detection using an improved faster regional convolutional neural network
Abstract With the increasing pace in the industrial sector, the need for a smart environment is also increasing and the production of industrial products in terms of quality always matters. There is a strong burden on the industrial environment to continue to reduce impulsive downtime, concert depri...
Guardado en:
Autores principales: | Faisal Saeed, Muhammad Jamal Ahmed, Malik Junaid Gul, Kim Jeong Hong, Anand Paul, Muthu Subash Kavitha |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cdad2c92ae74400e8c8aaf170209e172 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks
por: Xinzhe Yuan, et al.
Publicado: (2021) -
Robust feature space separation for deep convolutional neural network training
por: Ali Sekmen, et al.
Publicado: (2021) -
Robust face recognition based on multi-task convolutional neural network
por: Huilin Ge, et al.
Publicado: (2021) -
IMAGE SEGMENTATION AND OBJECT RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORK TECHNOLOGY
por: A.I. Godunov, et al.
Publicado: (2021) -
Improvement of the model of object recognition in aero photographs using deep convolutional neural networks
por: Vadym Slyusar, et al.
Publicado: (2021)