Prediction of Pseudoprogression versus Progression using Machine Learning Algorithm in Glioblastoma
Abstract We aimed to investigate the feasibility of machine learning (ML) algorithm to distinguish pseudoprogression (PsPD) from progression (PD) in patients with glioblastoma (GBM). We recruited the patients diagnosed as primary GBM who received gross total resection (GTR) and concurrent chemoradio...
Guardado en:
Autores principales: | Bum-Sup Jang, Seung Hyuck Jeon, Il Han Kim, In Ah Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cdb37370dbdc4f8f86062035714c7a2b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advanced Imaging Techniques for Differentiating Pseudoprogression and Tumor Recurrence After Immunotherapy for Glioblastoma
por: Yan Li, et al.
Publicado: (2021) -
Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning
por: Joonsang Lee, et al.
Publicado: (2020) -
Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
por: Nabil Elshafeey, et al.
Publicado: (2019) -
The phenomenon of pseudoprogression in cancer immunotherapy: is everything so unambiguous?
por: Vladislav O. Sarzhevskiy, et al.
Publicado: (2021) -
Analysis of the mandibular canal course using unsupervised machine learning algorithm.
por: Young Hyun Kim, et al.
Publicado: (2021)