Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest
Abstract Biogenic organic aerosols can affect cloud condensation nuclei (CCN) properties, and subsequently impact climate change. Large uncertainties exist in how the difference in the types of terrestrial biogenic sources and the abundance of organics relative to sulfate affect CCN properties. For...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cdda827fb8cc4aef8854bd89b4ee6e4a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cdda827fb8cc4aef8854bd89b4ee6e4a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cdda827fb8cc4aef8854bd89b4ee6e4a2021-12-02T15:04:51ZEvidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest10.1038/s41598-017-08112-92045-2322https://doaj.org/article/cdda827fb8cc4aef8854bd89b4ee6e4a2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08112-9https://doaj.org/toc/2045-2322Abstract Biogenic organic aerosols can affect cloud condensation nuclei (CCN) properties, and subsequently impact climate change. Large uncertainties exist in how the difference in the types of terrestrial biogenic sources and the abundance of organics relative to sulfate affect CCN properties. For the submicron water-soluble aerosols collected for two years in a cool-temperate forest in northern Japan, we show that the hygroscopicity parameter κCCN (0.44 ± 0.07) exhibited a distinct seasonal trend with a minimum in autumn (κCCN = 0.32–0.37); these κCCN values were generally larger than that of ambient particles, including water-insoluble fractions. The temporal variability of κCCN was controlled by the water-soluble organic matter (WSOM)-to-sulfate ratio (R2 > 0.60), where the significant reduction of κCCN in autumn was linked to the increased WSOM/sulfate ratio. Positive matrix factorization analysis indicates that α-pinene-derived secondary organic aerosol (SOA) substantially contributed to the WSOM mass (~75%) in autumn, the majority of which was attributable to emissions from litter/soil microbial activity near the forest floor. These findings suggest that WSOM, most likely α-pinene SOA, originated from the forest floor can significantly suppress the aerosol CCN activity in cool-temperate forests, which have implications for predicting climate effects by changes in biogenic emissions in future.Astrid MüllerYuzo MiyazakiEri TachibanaKimitaka KawamuraTsutom HiuraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Astrid Müller Yuzo Miyazaki Eri Tachibana Kimitaka Kawamura Tsutom Hiura Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest |
description |
Abstract Biogenic organic aerosols can affect cloud condensation nuclei (CCN) properties, and subsequently impact climate change. Large uncertainties exist in how the difference in the types of terrestrial biogenic sources and the abundance of organics relative to sulfate affect CCN properties. For the submicron water-soluble aerosols collected for two years in a cool-temperate forest in northern Japan, we show that the hygroscopicity parameter κCCN (0.44 ± 0.07) exhibited a distinct seasonal trend with a minimum in autumn (κCCN = 0.32–0.37); these κCCN values were generally larger than that of ambient particles, including water-insoluble fractions. The temporal variability of κCCN was controlled by the water-soluble organic matter (WSOM)-to-sulfate ratio (R2 > 0.60), where the significant reduction of κCCN in autumn was linked to the increased WSOM/sulfate ratio. Positive matrix factorization analysis indicates that α-pinene-derived secondary organic aerosol (SOA) substantially contributed to the WSOM mass (~75%) in autumn, the majority of which was attributable to emissions from litter/soil microbial activity near the forest floor. These findings suggest that WSOM, most likely α-pinene SOA, originated from the forest floor can significantly suppress the aerosol CCN activity in cool-temperate forests, which have implications for predicting climate effects by changes in biogenic emissions in future. |
format |
article |
author |
Astrid Müller Yuzo Miyazaki Eri Tachibana Kimitaka Kawamura Tsutom Hiura |
author_facet |
Astrid Müller Yuzo Miyazaki Eri Tachibana Kimitaka Kawamura Tsutom Hiura |
author_sort |
Astrid Müller |
title |
Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest |
title_short |
Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest |
title_full |
Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest |
title_fullStr |
Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest |
title_full_unstemmed |
Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest |
title_sort |
evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/cdda827fb8cc4aef8854bd89b4ee6e4a |
work_keys_str_mv |
AT astridmuller evidenceofareductionincloudcondensationnucleiactivityofwatersolubleaerosolscausedbybiogenicemissionsinacooltemperateforest AT yuzomiyazaki evidenceofareductionincloudcondensationnucleiactivityofwatersolubleaerosolscausedbybiogenicemissionsinacooltemperateforest AT eritachibana evidenceofareductionincloudcondensationnucleiactivityofwatersolubleaerosolscausedbybiogenicemissionsinacooltemperateforest AT kimitakakawamura evidenceofareductionincloudcondensationnucleiactivityofwatersolubleaerosolscausedbybiogenicemissionsinacooltemperateforest AT tsutomhiura evidenceofareductionincloudcondensationnucleiactivityofwatersolubleaerosolscausedbybiogenicemissionsinacooltemperateforest |
_version_ |
1718389045045755904 |