Integration of the transcriptome and glycome for identification of glycan cell signatures.
Abnormalities in glycan biosynthesis have been conclusively linked to many diseases but the complexity of glycosylation has hindered the analysis of glycan data in order to identify glycoforms contributing to disease. To overcome this limitation, we developed a quantitative N-glycosylation model tha...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cddeeac423a2421e825885b2eba762b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cddeeac423a2421e825885b2eba762b7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cddeeac423a2421e825885b2eba762b72021-11-18T05:52:33ZIntegration of the transcriptome and glycome for identification of glycan cell signatures.1553-734X1553-735810.1371/journal.pcbi.1002813https://doaj.org/article/cddeeac423a2421e825885b2eba762b72013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23326219/pdf/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Abnormalities in glycan biosynthesis have been conclusively linked to many diseases but the complexity of glycosylation has hindered the analysis of glycan data in order to identify glycoforms contributing to disease. To overcome this limitation, we developed a quantitative N-glycosylation model that interprets and integrates mass spectral and transcriptomic data by incorporating key glycosylation enzyme activities. Using the cancer progression model of androgen-dependent to androgen-independent Lymph Node Carcinoma of the Prostate (LNCaP) cells, the N-glycosylation model identified and quantified glycan structural details not typically derived from single-stage mass spectral or gene expression data. Differences between the cell types uncovered include increases in H(II) and Le(y) epitopes, corresponding to greater activity of α2-Fuc-transferase (FUT1) in the androgen-independent cells. The model further elucidated limitations in the two analytical platforms including a defect in the microarray for detecting the GnTV (MGAT5) enzyme. Our results demonstrate the potential of systems glycobiology tools for elucidating key glycan biomarkers and potential therapeutic targets. The integration of multiple data sets represents an important application of systems biology for understanding complex cellular processes.Sandra V BennunKevin J YaremaMichael J BetenbaughFrederick J KrambeckPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 9, Iss 1, p e1002813 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Sandra V Bennun Kevin J Yarema Michael J Betenbaugh Frederick J Krambeck Integration of the transcriptome and glycome for identification of glycan cell signatures. |
description |
Abnormalities in glycan biosynthesis have been conclusively linked to many diseases but the complexity of glycosylation has hindered the analysis of glycan data in order to identify glycoforms contributing to disease. To overcome this limitation, we developed a quantitative N-glycosylation model that interprets and integrates mass spectral and transcriptomic data by incorporating key glycosylation enzyme activities. Using the cancer progression model of androgen-dependent to androgen-independent Lymph Node Carcinoma of the Prostate (LNCaP) cells, the N-glycosylation model identified and quantified glycan structural details not typically derived from single-stage mass spectral or gene expression data. Differences between the cell types uncovered include increases in H(II) and Le(y) epitopes, corresponding to greater activity of α2-Fuc-transferase (FUT1) in the androgen-independent cells. The model further elucidated limitations in the two analytical platforms including a defect in the microarray for detecting the GnTV (MGAT5) enzyme. Our results demonstrate the potential of systems glycobiology tools for elucidating key glycan biomarkers and potential therapeutic targets. The integration of multiple data sets represents an important application of systems biology for understanding complex cellular processes. |
format |
article |
author |
Sandra V Bennun Kevin J Yarema Michael J Betenbaugh Frederick J Krambeck |
author_facet |
Sandra V Bennun Kevin J Yarema Michael J Betenbaugh Frederick J Krambeck |
author_sort |
Sandra V Bennun |
title |
Integration of the transcriptome and glycome for identification of glycan cell signatures. |
title_short |
Integration of the transcriptome and glycome for identification of glycan cell signatures. |
title_full |
Integration of the transcriptome and glycome for identification of glycan cell signatures. |
title_fullStr |
Integration of the transcriptome and glycome for identification of glycan cell signatures. |
title_full_unstemmed |
Integration of the transcriptome and glycome for identification of glycan cell signatures. |
title_sort |
integration of the transcriptome and glycome for identification of glycan cell signatures. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/cddeeac423a2421e825885b2eba762b7 |
work_keys_str_mv |
AT sandravbennun integrationofthetranscriptomeandglycomeforidentificationofglycancellsignatures AT kevinjyarema integrationofthetranscriptomeandglycomeforidentificationofglycancellsignatures AT michaeljbetenbaugh integrationofthetranscriptomeandglycomeforidentificationofglycancellsignatures AT frederickjkrambeck integrationofthetranscriptomeandglycomeforidentificationofglycancellsignatures |
_version_ |
1718424755888979968 |