Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
Artificial neural networks exhibit learning abilities and can perform tasks which are tricky for conventional computing systems, such as pattern recognition. Here, Serb et al. show experimentally that memristor arrays can learn reversibly from noisy data thanks to sophisticated learning rules.
Guardado en:
Autores principales: | Alexander Serb, Johannes Bill, Ali Khiat, Radu Berdan, Robert Legenstein, Themis Prodromakis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cdeb3fafed714e98959c6868368644df |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Challenges hindering memristive neuromorphic hardware from going mainstream
por: Gina C. Adam, et al.
Publicado: (2018) -
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018) -
Gaussian synapses for probabilistic neural networks
por: Amritanand Sebastian, et al.
Publicado: (2019) -
Real-time encoding and compression of neuronal spikes by metal-oxide memristors
por: Isha Gupta, et al.
Publicado: (2016) -
H∞ state estimation for discrete memristive neural networks with signal quantization and probabilistic time delay
por: Le Feng, et al.
Publicado: (2021)