Effective Removal of Barrier Layer on the Surface of Low-Nickel Matte in an FeCl<sub>3</sub>-HCl-H<sub>2</sub>O Solution
Using ferric chloride as an oxidant, here, we investigated the leaching effect of low-nickel matte in a flow field produced by mechanical agitation. The factors affecting a leaching reaction, such as stirring speed, leaching time, low-nickel matte particle size, and inert abrasive quartz sand, were...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cdf5c6b5a848434786e54eb3eae046ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cdf5c6b5a848434786e54eb3eae046ec |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cdf5c6b5a848434786e54eb3eae046ec2021-11-25T18:26:22ZEffective Removal of Barrier Layer on the Surface of Low-Nickel Matte in an FeCl<sub>3</sub>-HCl-H<sub>2</sub>O Solution10.3390/min111112192075-163Xhttps://doaj.org/article/cdf5c6b5a848434786e54eb3eae046ec2021-11-01T00:00:00Zhttps://www.mdpi.com/2075-163X/11/11/1219https://doaj.org/toc/2075-163XUsing ferric chloride as an oxidant, here, we investigated the leaching effect of low-nickel matte in a flow field produced by mechanical agitation. The factors affecting a leaching reaction, such as stirring speed, leaching time, low-nickel matte particle size, and inert abrasive quartz sand, were studied. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), a laser particle size analyzer, optical microscopy (OM), a scanning electron microscopy (SEM) with an energy dispersive X-ray detector (EDS), and a Raman spectrometer were used to characterize the materials before and after the leaching reaction. The contents of the main metal ions such as Ni, Cu, and Co in the leaching solution were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Using the control variable method, the optimal experimental conditions were as follows: 2 mol/L FeCl<sub>3</sub>—0.5 mol/L HCl-H<sub>2</sub>O system with low-nickel matte and quartz sand (mass ratio is 1:5) and leaching at 90 °C for 8 h. The results showed that the blocking effect of the solid product sulfur layer was effectively removed and continuous leaching was realized. The leaching efficiencies of Ni, Cu, and Co were 98.9%, 99.3%, and 98.1%, respectively.Chuncheng ZhuYu LeiXinbo HuQian XuXingli ZouHongwei ChengXionggang LuMDPI AGarticlelow-nickel matteinterfacial reactionbarrier layerinert abrasiveFeCl<sub>3</sub>-HCl-H<sub>2</sub>O solutionMineralogyQE351-399.2ENMinerals, Vol 11, Iss 1219, p 1219 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
low-nickel matte interfacial reaction barrier layer inert abrasive FeCl<sub>3</sub>-HCl-H<sub>2</sub>O solution Mineralogy QE351-399.2 |
spellingShingle |
low-nickel matte interfacial reaction barrier layer inert abrasive FeCl<sub>3</sub>-HCl-H<sub>2</sub>O solution Mineralogy QE351-399.2 Chuncheng Zhu Yu Lei Xinbo Hu Qian Xu Xingli Zou Hongwei Cheng Xionggang Lu Effective Removal of Barrier Layer on the Surface of Low-Nickel Matte in an FeCl<sub>3</sub>-HCl-H<sub>2</sub>O Solution |
description |
Using ferric chloride as an oxidant, here, we investigated the leaching effect of low-nickel matte in a flow field produced by mechanical agitation. The factors affecting a leaching reaction, such as stirring speed, leaching time, low-nickel matte particle size, and inert abrasive quartz sand, were studied. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), a laser particle size analyzer, optical microscopy (OM), a scanning electron microscopy (SEM) with an energy dispersive X-ray detector (EDS), and a Raman spectrometer were used to characterize the materials before and after the leaching reaction. The contents of the main metal ions such as Ni, Cu, and Co in the leaching solution were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Using the control variable method, the optimal experimental conditions were as follows: 2 mol/L FeCl<sub>3</sub>—0.5 mol/L HCl-H<sub>2</sub>O system with low-nickel matte and quartz sand (mass ratio is 1:5) and leaching at 90 °C for 8 h. The results showed that the blocking effect of the solid product sulfur layer was effectively removed and continuous leaching was realized. The leaching efficiencies of Ni, Cu, and Co were 98.9%, 99.3%, and 98.1%, respectively. |
format |
article |
author |
Chuncheng Zhu Yu Lei Xinbo Hu Qian Xu Xingli Zou Hongwei Cheng Xionggang Lu |
author_facet |
Chuncheng Zhu Yu Lei Xinbo Hu Qian Xu Xingli Zou Hongwei Cheng Xionggang Lu |
author_sort |
Chuncheng Zhu |
title |
Effective Removal of Barrier Layer on the Surface of Low-Nickel Matte in an FeCl<sub>3</sub>-HCl-H<sub>2</sub>O Solution |
title_short |
Effective Removal of Barrier Layer on the Surface of Low-Nickel Matte in an FeCl<sub>3</sub>-HCl-H<sub>2</sub>O Solution |
title_full |
Effective Removal of Barrier Layer on the Surface of Low-Nickel Matte in an FeCl<sub>3</sub>-HCl-H<sub>2</sub>O Solution |
title_fullStr |
Effective Removal of Barrier Layer on the Surface of Low-Nickel Matte in an FeCl<sub>3</sub>-HCl-H<sub>2</sub>O Solution |
title_full_unstemmed |
Effective Removal of Barrier Layer on the Surface of Low-Nickel Matte in an FeCl<sub>3</sub>-HCl-H<sub>2</sub>O Solution |
title_sort |
effective removal of barrier layer on the surface of low-nickel matte in an fecl<sub>3</sub>-hcl-h<sub>2</sub>o solution |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/cdf5c6b5a848434786e54eb3eae046ec |
work_keys_str_mv |
AT chunchengzhu effectiveremovalofbarrierlayeronthesurfaceoflownickelmatteinanfeclsub3subhclhsub2subosolution AT yulei effectiveremovalofbarrierlayeronthesurfaceoflownickelmatteinanfeclsub3subhclhsub2subosolution AT xinbohu effectiveremovalofbarrierlayeronthesurfaceoflownickelmatteinanfeclsub3subhclhsub2subosolution AT qianxu effectiveremovalofbarrierlayeronthesurfaceoflownickelmatteinanfeclsub3subhclhsub2subosolution AT xinglizou effectiveremovalofbarrierlayeronthesurfaceoflownickelmatteinanfeclsub3subhclhsub2subosolution AT hongweicheng effectiveremovalofbarrierlayeronthesurfaceoflownickelmatteinanfeclsub3subhclhsub2subosolution AT xiongganglu effectiveremovalofbarrierlayeronthesurfaceoflownickelmatteinanfeclsub3subhclhsub2subosolution |
_version_ |
1718411159731699712 |