Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer

In this paper, the problem concerned is to find the optimum values of the seven uncertain parameters ξ1, ξ2, ξ3, ξ4, λ, Rc, and β of the semi-empirical equation that defines the proton exchange membrane fuel cell (PEMFC) polarization (I/V) relationship using a recent optimization technique, the mari...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahmed H. Yakout, Hany M. Hasanien, Hossam Kotb
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
MPA
Acceso en línea:https://doaj.org/article/ce079335e4754a369b0a139ddfa9a5ce
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, the problem concerned is to find the optimum values of the seven uncertain parameters ξ1, ξ2, ξ3, ξ4, λ, Rc, and β of the semi-empirical equation that defines the proton exchange membrane fuel cell (PEMFC) polarization (I/V) relationship using a recent optimization technique, the marine predator algorithm (MPA). The main target of this study is to obtain a very precise PEMFC steady state model. The MPA mimics the different random movements of marine predators when foraging and is believed to always converge to a stable value. Three popular stacks namely the Ballard Mark 5 kW, BCS stack 500 W, and Temasek 1 kW are investigated and efficiently modeled. Numerical results show the high accuracy of the MPA-based model when compared with other recently published optimization techniques.