Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer

In this paper, the problem concerned is to find the optimum values of the seven uncertain parameters ξ1, ξ2, ξ3, ξ4, λ, Rc, and β of the semi-empirical equation that defines the proton exchange membrane fuel cell (PEMFC) polarization (I/V) relationship using a recent optimization technique, the mari...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahmed H. Yakout, Hany M. Hasanien, Hossam Kotb
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
MPA
Acceso en línea:https://doaj.org/article/ce079335e4754a369b0a139ddfa9a5ce
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ce079335e4754a369b0a139ddfa9a5ce
record_format dspace
spelling oai:doaj.org-article:ce079335e4754a369b0a139ddfa9a5ce2021-11-22T04:22:03ZProton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer2090-447910.1016/j.asej.2021.04.014https://doaj.org/article/ce079335e4754a369b0a139ddfa9a5ce2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S209044792100191Xhttps://doaj.org/toc/2090-4479In this paper, the problem concerned is to find the optimum values of the seven uncertain parameters ξ1, ξ2, ξ3, ξ4, λ, Rc, and β of the semi-empirical equation that defines the proton exchange membrane fuel cell (PEMFC) polarization (I/V) relationship using a recent optimization technique, the marine predator algorithm (MPA). The main target of this study is to obtain a very precise PEMFC steady state model. The MPA mimics the different random movements of marine predators when foraging and is believed to always converge to a stable value. Three popular stacks namely the Ballard Mark 5 kW, BCS stack 500 W, and Temasek 1 kW are investigated and efficiently modeled. Numerical results show the high accuracy of the MPA-based model when compared with other recently published optimization techniques.Ahmed H. YakoutHany M. HasanienHossam KotbElsevierarticleFuel cellMPAOptimization methodsSteady state modelingDistributed generationEngineering (General). Civil engineering (General)TA1-2040ENAin Shams Engineering Journal, Vol 12, Iss 4, Pp 3765-3774 (2021)
institution DOAJ
collection DOAJ
language EN
topic Fuel cell
MPA
Optimization methods
Steady state modeling
Distributed generation
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle Fuel cell
MPA
Optimization methods
Steady state modeling
Distributed generation
Engineering (General). Civil engineering (General)
TA1-2040
Ahmed H. Yakout
Hany M. Hasanien
Hossam Kotb
Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer
description In this paper, the problem concerned is to find the optimum values of the seven uncertain parameters ξ1, ξ2, ξ3, ξ4, λ, Rc, and β of the semi-empirical equation that defines the proton exchange membrane fuel cell (PEMFC) polarization (I/V) relationship using a recent optimization technique, the marine predator algorithm (MPA). The main target of this study is to obtain a very precise PEMFC steady state model. The MPA mimics the different random movements of marine predators when foraging and is believed to always converge to a stable value. Three popular stacks namely the Ballard Mark 5 kW, BCS stack 500 W, and Temasek 1 kW are investigated and efficiently modeled. Numerical results show the high accuracy of the MPA-based model when compared with other recently published optimization techniques.
format article
author Ahmed H. Yakout
Hany M. Hasanien
Hossam Kotb
author_facet Ahmed H. Yakout
Hany M. Hasanien
Hossam Kotb
author_sort Ahmed H. Yakout
title Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer
title_short Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer
title_full Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer
title_fullStr Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer
title_full_unstemmed Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer
title_sort proton exchange membrane fuel cell steady state modeling using marine predator algorithm optimizer
publisher Elsevier
publishDate 2021
url https://doaj.org/article/ce079335e4754a369b0a139ddfa9a5ce
work_keys_str_mv AT ahmedhyakout protonexchangemembranefuelcellsteadystatemodelingusingmarinepredatoralgorithmoptimizer
AT hanymhasanien protonexchangemembranefuelcellsteadystatemodelingusingmarinepredatoralgorithmoptimizer
AT hossamkotb protonexchangemembranefuelcellsteadystatemodelingusingmarinepredatoralgorithmoptimizer
_version_ 1718418249246310400