Exploring the Sorption Mechanism of Ni(II) on Illite: Batch Sorption, Modelling, EXAFS and Extraction Investigations

Abstract The sorption mechanism of nickel (Ni) at the illite/water interface was investigated using batch, sorption modelling, extended X-ray absorption fine structure (EXAFS), and extraction approaches. The results showed that Ni(II) sorption on illite was strongly dependent on pH, contact time, te...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaolan Zhao, Shirong Qiang, Hanyu Wu, Yunbo Yang, Dadong Shao, Linchuan Fang, Jianjun Liang, Ping Li, Qiaohui Fan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ce0f7b8262714110b947bb4c6c5df62d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The sorption mechanism of nickel (Ni) at the illite/water interface was investigated using batch, sorption modelling, extended X-ray absorption fine structure (EXAFS), and extraction approaches. The results showed that Ni(II) sorption on illite was strongly dependent on pH, contact time, temperature, and initial Ni(II) concentration. At a low initial Ni(II) concentration, the ion exchange species of ≡X2Ni° and the inner-sphere complexes including ≡SsONi+, ≡SwONi+ and ≡SwONiOH° species are observed on the sorption edges of Ni(II) on illite. As the initial Ni(II) concentration increased to 1.7 × 10−3 mol/L, precipitates including surface-induced precipitation of s-Ni(OH)2 and amorphous Ni(OH)2 became more significant, especially under neutral to alkaline conditions. EXAFS analysis confirmed that Ni-Al layered double hydroxide (LDH) can gradually form with an increase in the contact time. At pH 7.0, α-Ni(OH)2 was produced in the initial stage and then transformed to the more stable form of Ni-Al LDH with increasing contact time because of the increased Al3+ dissolution. With an increase in temperatures, α-Ni(OH)2 phase on illite transformed to Ni-Al LDH phase, indicating a lower thermodynamic stability compared to Ni-Al LDH phase. These results are important to understand the geochemical behaviors to effectively remediate soil contaminated with Ni(II).