RF-Powered Wearable Energy Harvesting and Storage Module Based on E-Textile Coplanar Waveguide Rectenna and Supercapacitor

This paper presents a high-efficiency compact (<inline-formula> <tex-math notation="LaTeX">$0.016\lambda _{0}^{2}$ </tex-math></inline-formula>) textile-integrated energy harvesting and storage module for RF power transfer. A flexible 50 <inline-formula> <t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mahmoud Wagih, Nicholas Hillier, Sheng Yong, Alex S. Weddell, Steve Beeby
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/ce108313dbc64d5abdcfc55f16162858
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper presents a high-efficiency compact (<inline-formula> <tex-math notation="LaTeX">$0.016\lambda _{0}^{2}$ </tex-math></inline-formula>) textile-integrated energy harvesting and storage module for RF power transfer. A flexible 50 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-thick coplanar waveguide rectenna filament is integrated with a spray-coated supercapacitor to realize an &#x201C;e-textile&#x201D; energy supply module. The meandered antenna maintains an <inline-formula> <tex-math notation="LaTeX">$S_{11}&lt; -6$ </tex-math></inline-formula> dB inside and outside the fabric and in human proximity with a 2.3 dBi gain. The rectifier achieves a peak RF-DC efficiency of 80&#x0025;, across a 4.5 <inline-formula> <tex-math notation="LaTeX">$\text{k}\Omega $ </tex-math></inline-formula> load, and a 1.8 V open-circuit voltage from &#x2212;7 dBm. The supercapacitor is directly spray-coated on a cotton substrate using carbon and an aqueous electrolyte. When connected to the supercapacitor, the rectifier achieves over an octave half-power bandwidth. The textile-integrated rectenna is demonstrated charging the supercapacitor to 1.5 V (8.4 mJ) in 4 minutes, at 4.2 m from a license-free source, demonstrating a significant improvement over previous rectennas while eliminating power management circuitry. The integrated module has an end-to-end efficiency of 38&#x0025; at 1.8 m from the transmitter. On-body, the rectenna&#x2019;s efficiency is 4.8&#x0025;, inclusive of in-body losses and transient shadowing, harvesting 4 mJ in 32 seconds from 16.6 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula>/cm<sup>2</sup>. It is concluded that e-textile rectennas are the most efficient method for powering wearables from <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula>/cm<sup>2</sup> power densities.