Deep saliency models learn low-, mid-, and high-level features to predict scene attention
Abstract Deep saliency models represent the current state-of-the-art for predicting where humans look in real-world scenes. However, for deep saliency models to inform cognitive theories of attention, we need to know how deep saliency models prioritize different scene features to predict where peopl...
Enregistré dans:
Auteurs principaux: | Taylor R. Hayes, John M. Henderson |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ce387fe2b53e4987b3f74cda0a3e4bf3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Meaning Guides Attention during Real-World Scene Description
par: John M. Henderson, et autres
Publié: (2018) -
Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics.
par: Ruben Coen-Cagli, et autres
Publié: (2012) -
Visual tracking based on transfer learning of deep salience information
par: Zuo Haorui, et autres
Publié: (2020) -
Salience-based object prioritization during active viewing of naturalistic scenes in young and older adults
par: Antje Nuthmann, et autres
Publié: (2020) -
Emergence of visual saliency from natural scenes via context-mediated probability distributions coding.
par: Jinhua Xu, et autres
Publié: (2010)