A Scalable Bayesian Sampling Method Based on Stochastic Gradient Descent Isotropization
Stochastic gradient <span style="font-variant: small-caps;">sg</span>-based algorithms for Markov chain Monte Carlo sampling (<span style="font-variant: small-caps;">sgmcmc</span>) tackle large-scale Bayesian modeling problems by operating on mini-batches...
Guardado en:
Autores principales: | Giulio Franzese, Dimitrios Milios, Maurizio Filippone, Pietro Michiardi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ce4b43b8d50f4f07bbae919563d8ebfd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Biological Network Inference With GRASP: A Bayesian Network Structure Learning Method Using Adaptive Sequential Monte Carlo
por: Kaixian Yu, et al.
Publicado: (2021) -
Bayesian analysis of the genetic structure of a Brazilian popcorn germplasm using data from simple sequence repeats (SSR)
por: Saavedra,Javier, et al.
Publicado: (2013) -
Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
por: Wilson Tsakane Mongwe, et al.
Publicado: (2021) -
Passive Control of Silane Diffusion for Gradient Application of Surface Properties
por: Riley L. Howard, et al.
Publicado: (2021) -
Bayesian validation framework for dynamic epidemic models
por: Sayan Dasgupta, et al.
Publicado: (2021)