A Scalable Bayesian Sampling Method Based on Stochastic Gradient Descent Isotropization
Stochastic gradient <span style="font-variant: small-caps;">sg</span>-based algorithms for Markov chain Monte Carlo sampling (<span style="font-variant: small-caps;">sgmcmc</span>) tackle large-scale Bayesian modeling problems by operating on mini-batches...
Enregistré dans:
Auteurs principaux: | Giulio Franzese, Dimitrios Milios, Maurizio Filippone, Pietro Michiardi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ce4b43b8d50f4f07bbae919563d8ebfd |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Biological Network Inference With GRASP: A Bayesian Network Structure Learning Method Using Adaptive Sequential Monte Carlo
par: Kaixian Yu, et autres
Publié: (2021) -
Bayesian analysis of the genetic structure of a Brazilian popcorn germplasm using data from simple sequence repeats (SSR)
par: Saavedra,Javier, et autres
Publié: (2013) -
Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
par: Wilson Tsakane Mongwe, et autres
Publié: (2021) -
Passive Control of Silane Diffusion for Gradient Application of Surface Properties
par: Riley L. Howard, et autres
Publié: (2021) -
Bayesian validation framework for dynamic epidemic models
par: Sayan Dasgupta, et autres
Publié: (2021)