On Local Unitary Equivalence of Two and Three-qubit States

Abstract We study the local unitary equivalence for two and three-qubit mixed states by investigating the invariants under local unitary transformations. For two-qubit system, we prove that the determination of the local unitary equivalence of 2-qubits states only needs 14 or less invariants for arb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bao-Zhi Sun, Shao-Ming Fei, Zhi-Xi Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ce4e10564b3c44cdaf9853e3f94f4c6f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We study the local unitary equivalence for two and three-qubit mixed states by investigating the invariants under local unitary transformations. For two-qubit system, we prove that the determination of the local unitary equivalence of 2-qubits states only needs 14 or less invariants for arbitrary two-qubit states. Using the same method, we construct invariants for three-qubit mixed states. We prove that these invariants are sufficient to guarantee the LU equivalence of certain kind of three-qubit states. Also, we make a comparison with earlier works.