3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells

Abstract Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2) and zero emissions of greenhouse gas (CO2). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xian Liang, Xiaolin Ge, Yubin He, Mai Xu, Muhammad A. Shehzad, Fangmeng Sheng, Rachida Bance‐Soualhi, Jianjun Zhang, Weisheng Yu, Zijuan Ge, Chengpeng Wei, Wanjie Song, Jinlan Peng, John R. Varcoe, Liang Wu, Tongwen Xu
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/ce57317d7e644e758d5b7a0344fe6e07
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ce57317d7e644e758d5b7a0344fe6e07
record_format dspace
spelling oai:doaj.org-article:ce57317d7e644e758d5b7a0344fe6e072021-11-17T08:40:31Z3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells2198-384410.1002/advs.202102637https://doaj.org/article/ce57317d7e644e758d5b7a0344fe6e072021-11-01T00:00:00Zhttps://doi.org/10.1002/advs.202102637https://doaj.org/toc/2198-3844Abstract Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2) and zero emissions of greenhouse gas (CO2). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long‐term stabilities. Here, a 3D‐interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl‐terminated bi‐cationic quaternary‐ammonium‐based polyelectrolyte is employed as both the anionomer in the anion‐exchange membrane (AEM) and catalyst layers. A quaternary‐ammonium‐containing covalently locked interface is formed by thermally induced inter‐crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D‐zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H2/O2 AEMFC test demonstration shows promisingly high power densities (1.5 W cm−2 at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm−2.Xian LiangXiaolin GeYubin HeMai XuMuhammad A. ShehzadFangmeng ShengRachida Bance‐SoualhiJianjun ZhangWeisheng YuZijuan GeChengpeng WeiWanjie SongJinlan PengJohn R. VarcoeLiang WuTongwen XuWileyarticlecatalyst layersfuel cellsmembrane electrode assemblyinterfacesionomersScienceQENAdvanced Science, Vol 8, Iss 22, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic catalyst layers
fuel cells
membrane electrode assembly
interfaces
ionomers
Science
Q
spellingShingle catalyst layers
fuel cells
membrane electrode assembly
interfaces
ionomers
Science
Q
Xian Liang
Xiaolin Ge
Yubin He
Mai Xu
Muhammad A. Shehzad
Fangmeng Sheng
Rachida Bance‐Soualhi
Jianjun Zhang
Weisheng Yu
Zijuan Ge
Chengpeng Wei
Wanjie Song
Jinlan Peng
John R. Varcoe
Liang Wu
Tongwen Xu
3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
description Abstract Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2) and zero emissions of greenhouse gas (CO2). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long‐term stabilities. Here, a 3D‐interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl‐terminated bi‐cationic quaternary‐ammonium‐based polyelectrolyte is employed as both the anionomer in the anion‐exchange membrane (AEM) and catalyst layers. A quaternary‐ammonium‐containing covalently locked interface is formed by thermally induced inter‐crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D‐zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H2/O2 AEMFC test demonstration shows promisingly high power densities (1.5 W cm−2 at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm−2.
format article
author Xian Liang
Xiaolin Ge
Yubin He
Mai Xu
Muhammad A. Shehzad
Fangmeng Sheng
Rachida Bance‐Soualhi
Jianjun Zhang
Weisheng Yu
Zijuan Ge
Chengpeng Wei
Wanjie Song
Jinlan Peng
John R. Varcoe
Liang Wu
Tongwen Xu
author_facet Xian Liang
Xiaolin Ge
Yubin He
Mai Xu
Muhammad A. Shehzad
Fangmeng Sheng
Rachida Bance‐Soualhi
Jianjun Zhang
Weisheng Yu
Zijuan Ge
Chengpeng Wei
Wanjie Song
Jinlan Peng
John R. Varcoe
Liang Wu
Tongwen Xu
author_sort Xian Liang
title 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_short 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_full 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_fullStr 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_full_unstemmed 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
title_sort 3d‐zipped interface: in situ covalent‐locking for high performance of anion exchange membrane fuel cells
publisher Wiley
publishDate 2021
url https://doaj.org/article/ce57317d7e644e758d5b7a0344fe6e07
work_keys_str_mv AT xianliang 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT xiaolinge 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT yubinhe 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT maixu 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT muhammadashehzad 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT fangmengsheng 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT rachidabancesoualhi 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT jianjunzhang 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT weishengyu 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT zijuange 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT chengpengwei 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT wanjiesong 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT jinlanpeng 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT johnrvarcoe 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT liangwu 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
AT tongwenxu 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells
_version_ 1718425701395202048