3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells
Abstract Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2) and zero emissions of greenhouse gas (CO2). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the c...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ce57317d7e644e758d5b7a0344fe6e07 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ce57317d7e644e758d5b7a0344fe6e07 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ce57317d7e644e758d5b7a0344fe6e072021-11-17T08:40:31Z3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells2198-384410.1002/advs.202102637https://doaj.org/article/ce57317d7e644e758d5b7a0344fe6e072021-11-01T00:00:00Zhttps://doi.org/10.1002/advs.202102637https://doaj.org/toc/2198-3844Abstract Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2) and zero emissions of greenhouse gas (CO2). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long‐term stabilities. Here, a 3D‐interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl‐terminated bi‐cationic quaternary‐ammonium‐based polyelectrolyte is employed as both the anionomer in the anion‐exchange membrane (AEM) and catalyst layers. A quaternary‐ammonium‐containing covalently locked interface is formed by thermally induced inter‐crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D‐zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H2/O2 AEMFC test demonstration shows promisingly high power densities (1.5 W cm−2 at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm−2.Xian LiangXiaolin GeYubin HeMai XuMuhammad A. ShehzadFangmeng ShengRachida Bance‐SoualhiJianjun ZhangWeisheng YuZijuan GeChengpeng WeiWanjie SongJinlan PengJohn R. VarcoeLiang WuTongwen XuWileyarticlecatalyst layersfuel cellsmembrane electrode assemblyinterfacesionomersScienceQENAdvanced Science, Vol 8, Iss 22, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
catalyst layers fuel cells membrane electrode assembly interfaces ionomers Science Q |
spellingShingle |
catalyst layers fuel cells membrane electrode assembly interfaces ionomers Science Q Xian Liang Xiaolin Ge Yubin He Mai Xu Muhammad A. Shehzad Fangmeng Sheng Rachida Bance‐Soualhi Jianjun Zhang Weisheng Yu Zijuan Ge Chengpeng Wei Wanjie Song Jinlan Peng John R. Varcoe Liang Wu Tongwen Xu 3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells |
description |
Abstract Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2) and zero emissions of greenhouse gas (CO2). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long‐term stabilities. Here, a 3D‐interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl‐terminated bi‐cationic quaternary‐ammonium‐based polyelectrolyte is employed as both the anionomer in the anion‐exchange membrane (AEM) and catalyst layers. A quaternary‐ammonium‐containing covalently locked interface is formed by thermally induced inter‐crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D‐zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H2/O2 AEMFC test demonstration shows promisingly high power densities (1.5 W cm−2 at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm−2. |
format |
article |
author |
Xian Liang Xiaolin Ge Yubin He Mai Xu Muhammad A. Shehzad Fangmeng Sheng Rachida Bance‐Soualhi Jianjun Zhang Weisheng Yu Zijuan Ge Chengpeng Wei Wanjie Song Jinlan Peng John R. Varcoe Liang Wu Tongwen Xu |
author_facet |
Xian Liang Xiaolin Ge Yubin He Mai Xu Muhammad A. Shehzad Fangmeng Sheng Rachida Bance‐Soualhi Jianjun Zhang Weisheng Yu Zijuan Ge Chengpeng Wei Wanjie Song Jinlan Peng John R. Varcoe Liang Wu Tongwen Xu |
author_sort |
Xian Liang |
title |
3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells |
title_short |
3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells |
title_full |
3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells |
title_fullStr |
3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells |
title_full_unstemmed |
3D‐Zipped Interface: In Situ Covalent‐Locking for High Performance of Anion Exchange Membrane Fuel Cells |
title_sort |
3d‐zipped interface: in situ covalent‐locking for high performance of anion exchange membrane fuel cells |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/ce57317d7e644e758d5b7a0344fe6e07 |
work_keys_str_mv |
AT xianliang 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT xiaolinge 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT yubinhe 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT maixu 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT muhammadashehzad 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT fangmengsheng 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT rachidabancesoualhi 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT jianjunzhang 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT weishengyu 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT zijuange 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT chengpengwei 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT wanjiesong 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT jinlanpeng 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT johnrvarcoe 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT liangwu 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells AT tongwenxu 3dzippedinterfaceinsitucovalentlockingforhighperformanceofanionexchangemembranefuelcells |
_version_ |
1718425701395202048 |