Effects of Metoprolol on Periprocedural Myocardial Infarction After Percutaneous Coronary Intervention (Type 4a MI): An Inverse Probability of Treatment Weighting Analysis

Background: Metoprolol is the most used cardiac selective β-blocker and has been recommended as a mainstay drug in the management of acute myocardial infarction (AMI). However, the evidence supporting this regimen in periprocedural myocardial infarction (PMI) is limited.Methods: This study identifie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Duanbin Li, Ya Li, Maoning Lin, Wenjuan Zhang, Guosheng Fu, Zhaoyang Chen, Chongying Jin, Wenbin Zhang
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/ce6038ee9d6144029ee7446367b6e7da
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Background: Metoprolol is the most used cardiac selective β-blocker and has been recommended as a mainstay drug in the management of acute myocardial infarction (AMI). However, the evidence supporting this regimen in periprocedural myocardial infarction (PMI) is limited.Methods: This study identified 860 individuals who suffered PMI following percutaneous coronary intervention (PCI) procedure and median followed up for 3.2 years. Subjects were dichotomized according to whether they received chronic oral sustained-release metoprolol succinate following PMI. After inverse probability of treatment weighting (IPTW) adjustment, logistic regression analysis, Kaplan-Meier curve, and Cox regression analysis were performed to estimate the effects of metoprolol on major adverse cardiovascular events (MACEs) which composed of cardiac death, myocardial infarction (MI), stroke, and revascularization. Moreover, an exploratory analysis was performed according to hypertension, cardiac troponin I (cTnI) elevation, and cardiac function. A double robust adjustment was used for sensitivity analysis.Results: Among enrolled PMI subjects, 456 (53%) patients received metoprolol treatment and 404 (47%) patients received observation. After IPTW adjustment, receiving metoprolol was found to reduce the subsequent 3-year risk of MACEs by nearly 7.1% [15 vs. 22.1%, absolute risk difference (ARD) = 0.07, number needed to treat (NNT) = 14, relative risk (RR) = 0.682]. In IPTW-adjusted Cox regression analyses, receiving metoprolol was related to a reduced risk of MACEs (hazard ratio [HR] = 0.588, 95%CI [0.385–0.898], P = 0.014) and revascularization (HR = 0.538, 95%CI [0.326–0.89], P = 0.016). Additionally, IPTW-adjusted logistic regression analysis showed that receiving metoprolol reduced the risk of MI at the third year (odds ratio [OR] = 0.972, 95% CI [0.948–997], P = 0.029). Exploratory analysis showed that the protective effect of metoprolol was more pronounced in subgroups of hypertension and cTnI elevation ≥1,000%, and was remained in patients without cardiac dysfunction. The benefits above were consistent when double robust adjustments were performed.Conclusion: In the real-world setting, receiving metoprolol treatment following PCI-related PMI has decreased the subsequent risk of MACEs, particularly the risk of recurrent MI and revascularization.