Performance Analysis of a Stand-Alone PV/WT/Biomass/Bat System in Alrashda Village in Egypt

This paper presents an analysis and optimization of an isolated hybrid renewable power system to operate in the Alrashda village in the Dakhla Oasis, which is situated in the New Valley Governorate in Egypt. The proposed hybrid system is designed to integrate a biomass system with a photovoltaic (PV...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hoda Abd El-Sattar, Salah Kamel, Hamdy Sultan, Marcos Tostado-Véliz, Ali M. Eltamaly, Francisco Jurado
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
PV
T
Acceso en línea:https://doaj.org/article/ce6b73f5c109463d99c8bf2a35154f1d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper presents an analysis and optimization of an isolated hybrid renewable power system to operate in the Alrashda village in the Dakhla Oasis, which is situated in the New Valley Governorate in Egypt. The proposed hybrid system is designed to integrate a biomass system with a photovoltaic (PV), wind turbine (WT) and battery storage system (Bat). Four different cases are proposed and compared for analyzing and optimizing. The first case is a configuration of PV and WT with a biomass system and battery bank. The second case is the integration of PV with a biomass system and battery bank. The third case is WT integrated with biomass and a battery bank, and the fourth case is a conventional PV, WT, and battery bank as the main storage unit. The optimization is designed to reduce component oversizing and ensure the dependable control of power supplies with the objective function of reducing the levelized cost of energy and loss of power supply probability. Four optimization algorithms, namely Heap-based optimizer (HBO), Franklin’s and Coulomb’s algorithm (CFA), the Sooty Tern Optimization Algorithm (STOA), and Grey Wolf Optimizer (GWO) are utilized and compared with each other to ensure that all load demand is met at the lowest energy cost (COE) for the proposed hybrid system. The obtained results revealed that the HBO has achieved the best optimal solution for the suggested hybrid system for case one and two, with the minimum COE 0.121171 and 0.1311804 $/kWh, respectively, and with net present cost (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>NPC</mi></mrow></semantics></math></inline-formula>) of $3,559,143 and $3,853,160, respectively. Conversely, STOA has achieved the best optimal solution for case three and four, with a COE of 0.105673 and 0.332497 $/kWh, and an NPC of $3,103,938 and $9,766,441, respectively.