Statistical downscaling using principal component regression for climate change impact assessment at the Cauvery river basin
Climate change impact studies are generally carried out with higher resolution general circulation model (GCM) outputs, which are usually for a global scale, and it is difficult to use the same for a regional scale. GCM simulations require downscaling to get a coarser scale output for local climate...
Guardado en:
Autores principales: | Parthiban Loganathan, Amit Baburao Mahindrakar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ce8bbdd7513d47ef8c92eac6536e588d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The development of statistical downscaling methods for assessing the effects of climate change on the precipitation isotopes concentration
por: Sara Nazif, et al.
Publicado: (2021) -
Intercomparing the robustness of machine learning models in simulation and forecasting of streamflow
por: Parthiban Loganathan, et al.
Publicado: (2021) -
Statistical downscaling of precipitation using inclusive multiple modelling (IMM) at two levels
por: Sina Sadeghfam, et al.
Publicado: (2021) -
Sensitivity of physical parameterization schemes in WRF model for dynamic downscaling of climatic variables over the MRB
por: Lia Pervin, et al.
Publicado: (2021) -
Impact of climate change on hydro-climatological parameters in North Cyprus: application of artificial intelligence-based statistical downscaling models
por: Gozen Elkiran, et al.
Publicado: (2021)