Subseafloor sulphide deposit formed by pumice replacement mineralisation

Abstract Seafloor massive sulphide (SMS) deposits, modern analogues of volcanogenic massive sulphide (VMS) deposits on land, represent future resources of base and precious metals. Studies of VMS deposits have proposed two emplacement mechanisms for SMS deposits: exhalative deposition on the seafloo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tatsuo Nozaki, Toshiro Nagase, Yutaro Takaya, Toru Yamasaki, Tsubasa Otake, Kotaro Yonezu, Kei Ikehata, Shuhei Totsuka, Kazuya Kitada, Yoshinori Sanada, Yasuhiro Yamada, Jun-ichiro Ishibashi, Hidenori Kumagai, Lena Maeda, the D/V Chikyu Expedition 909 Scientists
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ce91edaedaf14042917c9df2810e79d6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ce91edaedaf14042917c9df2810e79d6
record_format dspace
spelling oai:doaj.org-article:ce91edaedaf14042917c9df2810e79d62021-12-02T13:44:15ZSubseafloor sulphide deposit formed by pumice replacement mineralisation10.1038/s41598-021-87050-z2045-2322https://doaj.org/article/ce91edaedaf14042917c9df2810e79d62021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87050-zhttps://doaj.org/toc/2045-2322Abstract Seafloor massive sulphide (SMS) deposits, modern analogues of volcanogenic massive sulphide (VMS) deposits on land, represent future resources of base and precious metals. Studies of VMS deposits have proposed two emplacement mechanisms for SMS deposits: exhalative deposition on the seafloor and mineral and void space replacement beneath the seafloor. The details of the latter mechanism are poorly characterised in detail, despite its potentially significant role in global metal cycling throughout Earth’s history, because in-situ studies require costly drilling campaigns to sample SMS deposits. Here, we interpret petrographic, geochemical and geophysical data from drill holes in a modern SMS deposit and demonstrate that it formed via subseafloor replacement of pumice. Samples from the sulphide body and overlying sediment at the Hakurei Site, Izena Hole, middle Okinawa Trough indicate that sulphides initially formed as aggregates of framboidal pyrite and matured into colloform and euhedral pyrite, which were replaced by chalcopyrite, sphalerite and galena. The initial framboidal pyrite is closely associated with altered material derived from pumice, and alternating layers of pumiceous and hemipelagic sediments functioned as a factory of sulphide mineralisation. We infer that anhydrite-rich layers within the hemipelagic sediment forced hydrothermal fluids to flow laterally, controlling precipitation of a sulphide body extending hundreds of meters.Tatsuo NozakiToshiro NagaseYutaro TakayaToru YamasakiTsubasa OtakeKotaro YonezuKei IkehataShuhei TotsukaKazuya KitadaYoshinori SanadaYasuhiro YamadaJun-ichiro IshibashiHidenori KumagaiLena Maedathe D/V Chikyu Expedition 909 ScientistsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tatsuo Nozaki
Toshiro Nagase
Yutaro Takaya
Toru Yamasaki
Tsubasa Otake
Kotaro Yonezu
Kei Ikehata
Shuhei Totsuka
Kazuya Kitada
Yoshinori Sanada
Yasuhiro Yamada
Jun-ichiro Ishibashi
Hidenori Kumagai
Lena Maeda
the D/V Chikyu Expedition 909 Scientists
Subseafloor sulphide deposit formed by pumice replacement mineralisation
description Abstract Seafloor massive sulphide (SMS) deposits, modern analogues of volcanogenic massive sulphide (VMS) deposits on land, represent future resources of base and precious metals. Studies of VMS deposits have proposed two emplacement mechanisms for SMS deposits: exhalative deposition on the seafloor and mineral and void space replacement beneath the seafloor. The details of the latter mechanism are poorly characterised in detail, despite its potentially significant role in global metal cycling throughout Earth’s history, because in-situ studies require costly drilling campaigns to sample SMS deposits. Here, we interpret petrographic, geochemical and geophysical data from drill holes in a modern SMS deposit and demonstrate that it formed via subseafloor replacement of pumice. Samples from the sulphide body and overlying sediment at the Hakurei Site, Izena Hole, middle Okinawa Trough indicate that sulphides initially formed as aggregates of framboidal pyrite and matured into colloform and euhedral pyrite, which were replaced by chalcopyrite, sphalerite and galena. The initial framboidal pyrite is closely associated with altered material derived from pumice, and alternating layers of pumiceous and hemipelagic sediments functioned as a factory of sulphide mineralisation. We infer that anhydrite-rich layers within the hemipelagic sediment forced hydrothermal fluids to flow laterally, controlling precipitation of a sulphide body extending hundreds of meters.
format article
author Tatsuo Nozaki
Toshiro Nagase
Yutaro Takaya
Toru Yamasaki
Tsubasa Otake
Kotaro Yonezu
Kei Ikehata
Shuhei Totsuka
Kazuya Kitada
Yoshinori Sanada
Yasuhiro Yamada
Jun-ichiro Ishibashi
Hidenori Kumagai
Lena Maeda
the D/V Chikyu Expedition 909 Scientists
author_facet Tatsuo Nozaki
Toshiro Nagase
Yutaro Takaya
Toru Yamasaki
Tsubasa Otake
Kotaro Yonezu
Kei Ikehata
Shuhei Totsuka
Kazuya Kitada
Yoshinori Sanada
Yasuhiro Yamada
Jun-ichiro Ishibashi
Hidenori Kumagai
Lena Maeda
the D/V Chikyu Expedition 909 Scientists
author_sort Tatsuo Nozaki
title Subseafloor sulphide deposit formed by pumice replacement mineralisation
title_short Subseafloor sulphide deposit formed by pumice replacement mineralisation
title_full Subseafloor sulphide deposit formed by pumice replacement mineralisation
title_fullStr Subseafloor sulphide deposit formed by pumice replacement mineralisation
title_full_unstemmed Subseafloor sulphide deposit formed by pumice replacement mineralisation
title_sort subseafloor sulphide deposit formed by pumice replacement mineralisation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ce91edaedaf14042917c9df2810e79d6
work_keys_str_mv AT tatsuonozaki subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT toshironagase subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT yutarotakaya subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT toruyamasaki subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT tsubasaotake subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT kotaroyonezu subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT keiikehata subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT shuheitotsuka subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT kazuyakitada subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT yoshinorisanada subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT yasuhiroyamada subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT junichiroishibashi subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT hidenorikumagai subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT lenamaeda subseafloorsulphidedepositformedbypumicereplacementmineralisation
AT thedvchikyuexpedition909scientists subseafloorsulphidedepositformedbypumicereplacementmineralisation
_version_ 1718392524556468224