Subseafloor sulphide deposit formed by pumice replacement mineralisation
Abstract Seafloor massive sulphide (SMS) deposits, modern analogues of volcanogenic massive sulphide (VMS) deposits on land, represent future resources of base and precious metals. Studies of VMS deposits have proposed two emplacement mechanisms for SMS deposits: exhalative deposition on the seafloo...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ce91edaedaf14042917c9df2810e79d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ce91edaedaf14042917c9df2810e79d6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ce91edaedaf14042917c9df2810e79d62021-12-02T13:44:15ZSubseafloor sulphide deposit formed by pumice replacement mineralisation10.1038/s41598-021-87050-z2045-2322https://doaj.org/article/ce91edaedaf14042917c9df2810e79d62021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87050-zhttps://doaj.org/toc/2045-2322Abstract Seafloor massive sulphide (SMS) deposits, modern analogues of volcanogenic massive sulphide (VMS) deposits on land, represent future resources of base and precious metals. Studies of VMS deposits have proposed two emplacement mechanisms for SMS deposits: exhalative deposition on the seafloor and mineral and void space replacement beneath the seafloor. The details of the latter mechanism are poorly characterised in detail, despite its potentially significant role in global metal cycling throughout Earth’s history, because in-situ studies require costly drilling campaigns to sample SMS deposits. Here, we interpret petrographic, geochemical and geophysical data from drill holes in a modern SMS deposit and demonstrate that it formed via subseafloor replacement of pumice. Samples from the sulphide body and overlying sediment at the Hakurei Site, Izena Hole, middle Okinawa Trough indicate that sulphides initially formed as aggregates of framboidal pyrite and matured into colloform and euhedral pyrite, which were replaced by chalcopyrite, sphalerite and galena. The initial framboidal pyrite is closely associated with altered material derived from pumice, and alternating layers of pumiceous and hemipelagic sediments functioned as a factory of sulphide mineralisation. We infer that anhydrite-rich layers within the hemipelagic sediment forced hydrothermal fluids to flow laterally, controlling precipitation of a sulphide body extending hundreds of meters.Tatsuo NozakiToshiro NagaseYutaro TakayaToru YamasakiTsubasa OtakeKotaro YonezuKei IkehataShuhei TotsukaKazuya KitadaYoshinori SanadaYasuhiro YamadaJun-ichiro IshibashiHidenori KumagaiLena Maedathe D/V Chikyu Expedition 909 ScientistsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tatsuo Nozaki Toshiro Nagase Yutaro Takaya Toru Yamasaki Tsubasa Otake Kotaro Yonezu Kei Ikehata Shuhei Totsuka Kazuya Kitada Yoshinori Sanada Yasuhiro Yamada Jun-ichiro Ishibashi Hidenori Kumagai Lena Maeda the D/V Chikyu Expedition 909 Scientists Subseafloor sulphide deposit formed by pumice replacement mineralisation |
description |
Abstract Seafloor massive sulphide (SMS) deposits, modern analogues of volcanogenic massive sulphide (VMS) deposits on land, represent future resources of base and precious metals. Studies of VMS deposits have proposed two emplacement mechanisms for SMS deposits: exhalative deposition on the seafloor and mineral and void space replacement beneath the seafloor. The details of the latter mechanism are poorly characterised in detail, despite its potentially significant role in global metal cycling throughout Earth’s history, because in-situ studies require costly drilling campaigns to sample SMS deposits. Here, we interpret petrographic, geochemical and geophysical data from drill holes in a modern SMS deposit and demonstrate that it formed via subseafloor replacement of pumice. Samples from the sulphide body and overlying sediment at the Hakurei Site, Izena Hole, middle Okinawa Trough indicate that sulphides initially formed as aggregates of framboidal pyrite and matured into colloform and euhedral pyrite, which were replaced by chalcopyrite, sphalerite and galena. The initial framboidal pyrite is closely associated with altered material derived from pumice, and alternating layers of pumiceous and hemipelagic sediments functioned as a factory of sulphide mineralisation. We infer that anhydrite-rich layers within the hemipelagic sediment forced hydrothermal fluids to flow laterally, controlling precipitation of a sulphide body extending hundreds of meters. |
format |
article |
author |
Tatsuo Nozaki Toshiro Nagase Yutaro Takaya Toru Yamasaki Tsubasa Otake Kotaro Yonezu Kei Ikehata Shuhei Totsuka Kazuya Kitada Yoshinori Sanada Yasuhiro Yamada Jun-ichiro Ishibashi Hidenori Kumagai Lena Maeda the D/V Chikyu Expedition 909 Scientists |
author_facet |
Tatsuo Nozaki Toshiro Nagase Yutaro Takaya Toru Yamasaki Tsubasa Otake Kotaro Yonezu Kei Ikehata Shuhei Totsuka Kazuya Kitada Yoshinori Sanada Yasuhiro Yamada Jun-ichiro Ishibashi Hidenori Kumagai Lena Maeda the D/V Chikyu Expedition 909 Scientists |
author_sort |
Tatsuo Nozaki |
title |
Subseafloor sulphide deposit formed by pumice replacement mineralisation |
title_short |
Subseafloor sulphide deposit formed by pumice replacement mineralisation |
title_full |
Subseafloor sulphide deposit formed by pumice replacement mineralisation |
title_fullStr |
Subseafloor sulphide deposit formed by pumice replacement mineralisation |
title_full_unstemmed |
Subseafloor sulphide deposit formed by pumice replacement mineralisation |
title_sort |
subseafloor sulphide deposit formed by pumice replacement mineralisation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ce91edaedaf14042917c9df2810e79d6 |
work_keys_str_mv |
AT tatsuonozaki subseafloorsulphidedepositformedbypumicereplacementmineralisation AT toshironagase subseafloorsulphidedepositformedbypumicereplacementmineralisation AT yutarotakaya subseafloorsulphidedepositformedbypumicereplacementmineralisation AT toruyamasaki subseafloorsulphidedepositformedbypumicereplacementmineralisation AT tsubasaotake subseafloorsulphidedepositformedbypumicereplacementmineralisation AT kotaroyonezu subseafloorsulphidedepositformedbypumicereplacementmineralisation AT keiikehata subseafloorsulphidedepositformedbypumicereplacementmineralisation AT shuheitotsuka subseafloorsulphidedepositformedbypumicereplacementmineralisation AT kazuyakitada subseafloorsulphidedepositformedbypumicereplacementmineralisation AT yoshinorisanada subseafloorsulphidedepositformedbypumicereplacementmineralisation AT yasuhiroyamada subseafloorsulphidedepositformedbypumicereplacementmineralisation AT junichiroishibashi subseafloorsulphidedepositformedbypumicereplacementmineralisation AT hidenorikumagai subseafloorsulphidedepositformedbypumicereplacementmineralisation AT lenamaeda subseafloorsulphidedepositformedbypumicereplacementmineralisation AT thedvchikyuexpedition909scientists subseafloorsulphidedepositformedbypumicereplacementmineralisation |
_version_ |
1718392524556468224 |