HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
The genome-wide investigation of chromatin organization enables insights into global gene expression control. Here, the authors present a computationally efficient method for the analysis of chromatin organization data and use it to recover principles of 3D organization across conditions.
Guardado en:
Autores principales: | Merve Sahin, Wilfred Wong, Yingqian Zhan, Kinsey Van Deynze, Richard Koche, Christina S. Leslie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cea56403ca294a09940716ef0bd1c22b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of significant chromatin contacts from HiChIP data by FitHiChIP
por: Sourya Bhattacharyya, et al.
Publicado: (2019) -
HiCancer: accurate and complete cancer genome phasing with Hi-C reads
por: Weihua Pan, et al.
Publicado: (2021) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
por: Yan Zhang, et al.
Publicado: (2018) -
Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data
por: Haitham Ashoor, et al.
Publicado: (2020) -
VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data
por: Max Highsmith, et al.
Publicado: (2021)