Presenilin/γ-secretase regulates neurexin processing at synapses.

Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates sy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carlos A Saura, Emilia Servián-Morilla, Francisco G Scholl
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ceb55d1f53d34f9496383617cd425375
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ceb55d1f53d34f9496383617cd425375
record_format dspace
spelling oai:doaj.org-article:ceb55d1f53d34f9496383617cd4253752021-11-18T06:54:52ZPresenilin/γ-secretase regulates neurexin processing at synapses.1932-620310.1371/journal.pone.0019430https://doaj.org/article/ceb55d1f53d34f9496383617cd4253752011-04-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21559374/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD)-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS-/- cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may play a role in FAD.Carlos A SauraEmilia Servián-MorillaFrancisco G SchollPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 6, Iss 4, p e19430 (2011)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Carlos A Saura
Emilia Servián-Morilla
Francisco G Scholl
Presenilin/γ-secretase regulates neurexin processing at synapses.
description Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD)-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS-/- cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may play a role in FAD.
format article
author Carlos A Saura
Emilia Servián-Morilla
Francisco G Scholl
author_facet Carlos A Saura
Emilia Servián-Morilla
Francisco G Scholl
author_sort Carlos A Saura
title Presenilin/γ-secretase regulates neurexin processing at synapses.
title_short Presenilin/γ-secretase regulates neurexin processing at synapses.
title_full Presenilin/γ-secretase regulates neurexin processing at synapses.
title_fullStr Presenilin/γ-secretase regulates neurexin processing at synapses.
title_full_unstemmed Presenilin/γ-secretase regulates neurexin processing at synapses.
title_sort presenilin/γ-secretase regulates neurexin processing at synapses.
publisher Public Library of Science (PLoS)
publishDate 2011
url https://doaj.org/article/ceb55d1f53d34f9496383617cd425375
work_keys_str_mv AT carlosasaura presenilingsecretaseregulatesneurexinprocessingatsynapses
AT emiliaservianmorilla presenilingsecretaseregulatesneurexinprocessingatsynapses
AT franciscogscholl presenilingsecretaseregulatesneurexinprocessingatsynapses
_version_ 1718424257064599552