Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
Abstract To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned usi...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ceb6c559134f49fa9d1b2048f5539650 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ceb6c559134f49fa9d1b2048f5539650 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ceb6c559134f49fa9d1b2048f55396502021-12-02T10:44:21ZClassification of paediatric brain tumours by diffusion weighted imaging and machine learning10.1038/s41598-021-82214-32045-2322https://doaj.org/article/ceb6c559134f49fa9d1b2048f55396502021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82214-3https://doaj.org/toc/2045-2322Abstract To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10−3 mm2 s−1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis.Jan NovakNiloufar ZarinabadHeather RoseTheodoros ArvanitisLesley MacPhersonBenjamin PinkeyAdam OatesPatrick HalesRichard GrundyDorothee AuerDaniel Rodriguez GutierrezTim JaspanShivaram AvulaLaurence AbernethyRamneek KaurDarren HargraveDipayan MitraSimon BaileyNigel DaviesChristopher ClarkAndrew PeetNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jan Novak Niloufar Zarinabad Heather Rose Theodoros Arvanitis Lesley MacPherson Benjamin Pinkey Adam Oates Patrick Hales Richard Grundy Dorothee Auer Daniel Rodriguez Gutierrez Tim Jaspan Shivaram Avula Laurence Abernethy Ramneek Kaur Darren Hargrave Dipayan Mitra Simon Bailey Nigel Davies Christopher Clark Andrew Peet Classification of paediatric brain tumours by diffusion weighted imaging and machine learning |
description |
Abstract To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10−3 mm2 s−1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis. |
format |
article |
author |
Jan Novak Niloufar Zarinabad Heather Rose Theodoros Arvanitis Lesley MacPherson Benjamin Pinkey Adam Oates Patrick Hales Richard Grundy Dorothee Auer Daniel Rodriguez Gutierrez Tim Jaspan Shivaram Avula Laurence Abernethy Ramneek Kaur Darren Hargrave Dipayan Mitra Simon Bailey Nigel Davies Christopher Clark Andrew Peet |
author_facet |
Jan Novak Niloufar Zarinabad Heather Rose Theodoros Arvanitis Lesley MacPherson Benjamin Pinkey Adam Oates Patrick Hales Richard Grundy Dorothee Auer Daniel Rodriguez Gutierrez Tim Jaspan Shivaram Avula Laurence Abernethy Ramneek Kaur Darren Hargrave Dipayan Mitra Simon Bailey Nigel Davies Christopher Clark Andrew Peet |
author_sort |
Jan Novak |
title |
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning |
title_short |
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning |
title_full |
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning |
title_fullStr |
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning |
title_full_unstemmed |
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning |
title_sort |
classification of paediatric brain tumours by diffusion weighted imaging and machine learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ceb6c559134f49fa9d1b2048f5539650 |
work_keys_str_mv |
AT jannovak classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT niloufarzarinabad classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT heatherrose classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT theodorosarvanitis classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT lesleymacpherson classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT benjaminpinkey classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT adamoates classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT patrickhales classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT richardgrundy classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT dorotheeauer classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT danielrodriguezgutierrez classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT timjaspan classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT shivaramavula classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT laurenceabernethy classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT ramneekkaur classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT darrenhargrave classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT dipayanmitra classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT simonbailey classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT nigeldavies classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT christopherclark classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning AT andrewpeet classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning |
_version_ |
1718396791251009536 |