Classification of paediatric brain tumours by diffusion weighted imaging and machine learning

Abstract To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned usi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jan Novak, Niloufar Zarinabad, Heather Rose, Theodoros Arvanitis, Lesley MacPherson, Benjamin Pinkey, Adam Oates, Patrick Hales, Richard Grundy, Dorothee Auer, Daniel Rodriguez Gutierrez, Tim Jaspan, Shivaram Avula, Laurence Abernethy, Ramneek Kaur, Darren Hargrave, Dipayan Mitra, Simon Bailey, Nigel Davies, Christopher Clark, Andrew Peet
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ceb6c559134f49fa9d1b2048f5539650
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ceb6c559134f49fa9d1b2048f5539650
record_format dspace
spelling oai:doaj.org-article:ceb6c559134f49fa9d1b2048f55396502021-12-02T10:44:21ZClassification of paediatric brain tumours by diffusion weighted imaging and machine learning10.1038/s41598-021-82214-32045-2322https://doaj.org/article/ceb6c559134f49fa9d1b2048f55396502021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82214-3https://doaj.org/toc/2045-2322Abstract To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10−3 mm2 s−1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis.Jan NovakNiloufar ZarinabadHeather RoseTheodoros ArvanitisLesley MacPhersonBenjamin PinkeyAdam OatesPatrick HalesRichard GrundyDorothee AuerDaniel Rodriguez GutierrezTim JaspanShivaram AvulaLaurence AbernethyRamneek KaurDarren HargraveDipayan MitraSimon BaileyNigel DaviesChristopher ClarkAndrew PeetNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jan Novak
Niloufar Zarinabad
Heather Rose
Theodoros Arvanitis
Lesley MacPherson
Benjamin Pinkey
Adam Oates
Patrick Hales
Richard Grundy
Dorothee Auer
Daniel Rodriguez Gutierrez
Tim Jaspan
Shivaram Avula
Laurence Abernethy
Ramneek Kaur
Darren Hargrave
Dipayan Mitra
Simon Bailey
Nigel Davies
Christopher Clark
Andrew Peet
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
description Abstract To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10−3 mm2 s−1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis.
format article
author Jan Novak
Niloufar Zarinabad
Heather Rose
Theodoros Arvanitis
Lesley MacPherson
Benjamin Pinkey
Adam Oates
Patrick Hales
Richard Grundy
Dorothee Auer
Daniel Rodriguez Gutierrez
Tim Jaspan
Shivaram Avula
Laurence Abernethy
Ramneek Kaur
Darren Hargrave
Dipayan Mitra
Simon Bailey
Nigel Davies
Christopher Clark
Andrew Peet
author_facet Jan Novak
Niloufar Zarinabad
Heather Rose
Theodoros Arvanitis
Lesley MacPherson
Benjamin Pinkey
Adam Oates
Patrick Hales
Richard Grundy
Dorothee Auer
Daniel Rodriguez Gutierrez
Tim Jaspan
Shivaram Avula
Laurence Abernethy
Ramneek Kaur
Darren Hargrave
Dipayan Mitra
Simon Bailey
Nigel Davies
Christopher Clark
Andrew Peet
author_sort Jan Novak
title Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
title_short Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
title_full Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
title_fullStr Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
title_full_unstemmed Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
title_sort classification of paediatric brain tumours by diffusion weighted imaging and machine learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ceb6c559134f49fa9d1b2048f5539650
work_keys_str_mv AT jannovak classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT niloufarzarinabad classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT heatherrose classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT theodorosarvanitis classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT lesleymacpherson classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT benjaminpinkey classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT adamoates classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT patrickhales classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT richardgrundy classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT dorotheeauer classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT danielrodriguezgutierrez classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT timjaspan classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT shivaramavula classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT laurenceabernethy classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT ramneekkaur classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT darrenhargrave classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT dipayanmitra classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT simonbailey classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT nigeldavies classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT christopherclark classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
AT andrewpeet classificationofpaediatricbraintumoursbydiffusionweightedimagingandmachinelearning
_version_ 1718396791251009536