Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
Abstract To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned usi...
Guardado en:
Autores principales: | Jan Novak, Niloufar Zarinabad, Heather Rose, Theodoros Arvanitis, Lesley MacPherson, Benjamin Pinkey, Adam Oates, Patrick Hales, Richard Grundy, Dorothee Auer, Daniel Rodriguez Gutierrez, Tim Jaspan, Shivaram Avula, Laurence Abernethy, Ramneek Kaur, Darren Hargrave, Dipayan Mitra, Simon Bailey, Nigel Davies, Christopher Clark, Andrew Peet |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ceb6c559134f49fa9d1b2048f5539650 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
por: James T. Grist, et al.
Publicado: (2021) -
Tissue metabolite profiles for the characterisation of paediatric cerebellar tumours
por: Christopher D. Bennett, et al.
Publicado: (2018) - Paediatric anaesthesia
-
Paediatric nursing
Publicado: (1989) - European Paediatrics