Prediction of Yangtze River streamflow based on deep learning neural network with El Niño–Southern Oscillation
Abstract Accurate long-term streamflow and flood forecasting have always been an important research direction in hydrology research. Nowadays, climate change, floods, and other anomalies occurring more and more frequently and bringing great losses to society. The prediction of streamflow, especially...
Guardado en:
Autores principales: | Si Ha, Darong Liu, Lin Mu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ceb6f4dd31da415ab4b3e63b5e061909 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Projecting the impacts of climate change on streamflow in the upper reaches of the Yangtze River basin
por: Danyang Gao, et al.
Publicado: (2021) -
Evaluation of Streamflow under Climate Change in the Zambezi River Basin of Southern Africa
por: George Z. Ndhlovu, et al.
Publicado: (2021) -
Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
por: Sujan Ghimire, et al.
Publicado: (2021) -
EEMD- and VMD-based hybrid GPR models for river streamflow point and interval predictions
por: Roghayeh Ghasempour, et al.
Publicado: (2021) -
Multivariate Streamflow Simulation Using Hybrid Deep Learning Models
por: Eyob Betru Wegayehu, et al.
Publicado: (2021)