Deep Learning Recurrent Neural Network for Concussion Classification in Adolescents Using Raw Electroencephalography Signals: Toward a Minimal Number of Sensors
Artificial neural networks (ANNs) are showing increasing promise as decision support tools in medicine and particularly in neuroscience and neuroimaging. Recently, there has been increasing work on using neural networks to classify individuals with concussion using electroencephalography (EEG) data....
Guardado en:
Autores principales: | Karun Thanjavur, Dionissios T. Hristopulos, Arif Babul, Kwang Moo Yi, Naznin Virji-Babul |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cebee3837ad3469795943d13bfc65f98 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Recurrent neural network-based acute concussion classifier using raw resting state EEG data
por: Karun Thanjavur, et al.
Publicado: (2021) -
Brain Oxygenation in Post-concussion Combat Sport Athletes
por: Paolo Tiberini, et al.
Publicado: (2021) -
Difference in the ascending reticular activating system injury between mild traumatic brain injury and cerebral concussion
por: Jang Sung Ho, et al.
Publicado: (2019) -
Hipopituitarismo postraumatismo encefalocraneano: revisión de la literatura y algoritmo de estudio y abordaje terapéutico
por: Carmona R.,Carolina, et al.
Publicado: (2020) -
Self-Reported Complaints as Prognostic Markers for Outcome After Mild Traumatic Brain Injury in Elderly: A Machine Learning Approach
por: Mayra Bittencourt, et al.
Publicado: (2021)