Electrodeposition of nano-Cu, Ni and binary Ni/Cu into nano-porous AAO layer for high-efficiency black spectrally selective coating
Abstract Background Anodic aluminum oxide (AAO) template is widespread due to its diverse metal nanostructures. Various solar selective black coatings on aluminum oxide template were investigated. Spectrally selective nano-coating of nickel, copper and nickel–copper on anodized aluminum was produced...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cec90749f38a438b8bb9e30d30268af4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cec90749f38a438b8bb9e30d30268af4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cec90749f38a438b8bb9e30d30268af42021-11-21T12:39:12ZElectrodeposition of nano-Cu, Ni and binary Ni/Cu into nano-porous AAO layer for high-efficiency black spectrally selective coating10.1186/s42269-021-00661-42522-8307https://doaj.org/article/cec90749f38a438b8bb9e30d30268af42021-11-01T00:00:00Zhttps://doi.org/10.1186/s42269-021-00661-4https://doaj.org/toc/2522-8307Abstract Background Anodic aluminum oxide (AAO) template is widespread due to its diverse metal nanostructures. Various solar selective black coatings on aluminum oxide template were investigated. Spectrally selective nano-coating of nickel, copper and nickel–copper on anodized aluminum was produced. Results The coatings were performed via electrodeposition and evaluated by measurement of coating thickness, hardness and optical properties. Also, these coatings were analyzed by scanning electron microscope, energy-dispersive X-ray spectroscopic and polarization studies in 3.5% NaCl solution. The anodized aluminum showed higher corrosion resistance (4.8284 KΩ) and lower corrosion rate (0.02189 mm/year). However, the electro-colored Al with Cu for 60 min showed the highest corrosion rate of 0.1942 mm/y, compared with other Al samples. The effect of anodizing time on the metal density and the optical efficiency of black copper coating was studied. Results The obtained solar panels exhibit low values of solar reflectance within the visible range and high solar absorption efficiency. These coatings are highly efficient and adequate for any solar system.H. S. HusseinM. F. ShaffeiAhmed M. Awad AbouelataMona A. Abdel-FatahSpringerOpenarticleElectrodepositionNickelCopperSelective coatingScienceQENBulletin of the National Research Centre, Vol 45, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Electrodeposition Nickel Copper Selective coating Science Q |
spellingShingle |
Electrodeposition Nickel Copper Selective coating Science Q H. S. Hussein M. F. Shaffei Ahmed M. Awad Abouelata Mona A. Abdel-Fatah Electrodeposition of nano-Cu, Ni and binary Ni/Cu into nano-porous AAO layer for high-efficiency black spectrally selective coating |
description |
Abstract Background Anodic aluminum oxide (AAO) template is widespread due to its diverse metal nanostructures. Various solar selective black coatings on aluminum oxide template were investigated. Spectrally selective nano-coating of nickel, copper and nickel–copper on anodized aluminum was produced. Results The coatings were performed via electrodeposition and evaluated by measurement of coating thickness, hardness and optical properties. Also, these coatings were analyzed by scanning electron microscope, energy-dispersive X-ray spectroscopic and polarization studies in 3.5% NaCl solution. The anodized aluminum showed higher corrosion resistance (4.8284 KΩ) and lower corrosion rate (0.02189 mm/year). However, the electro-colored Al with Cu for 60 min showed the highest corrosion rate of 0.1942 mm/y, compared with other Al samples. The effect of anodizing time on the metal density and the optical efficiency of black copper coating was studied. Results The obtained solar panels exhibit low values of solar reflectance within the visible range and high solar absorption efficiency. These coatings are highly efficient and adequate for any solar system. |
format |
article |
author |
H. S. Hussein M. F. Shaffei Ahmed M. Awad Abouelata Mona A. Abdel-Fatah |
author_facet |
H. S. Hussein M. F. Shaffei Ahmed M. Awad Abouelata Mona A. Abdel-Fatah |
author_sort |
H. S. Hussein |
title |
Electrodeposition of nano-Cu, Ni and binary Ni/Cu into nano-porous AAO layer for high-efficiency black spectrally selective coating |
title_short |
Electrodeposition of nano-Cu, Ni and binary Ni/Cu into nano-porous AAO layer for high-efficiency black spectrally selective coating |
title_full |
Electrodeposition of nano-Cu, Ni and binary Ni/Cu into nano-porous AAO layer for high-efficiency black spectrally selective coating |
title_fullStr |
Electrodeposition of nano-Cu, Ni and binary Ni/Cu into nano-porous AAO layer for high-efficiency black spectrally selective coating |
title_full_unstemmed |
Electrodeposition of nano-Cu, Ni and binary Ni/Cu into nano-porous AAO layer for high-efficiency black spectrally selective coating |
title_sort |
electrodeposition of nano-cu, ni and binary ni/cu into nano-porous aao layer for high-efficiency black spectrally selective coating |
publisher |
SpringerOpen |
publishDate |
2021 |
url |
https://doaj.org/article/cec90749f38a438b8bb9e30d30268af4 |
work_keys_str_mv |
AT hshussein electrodepositionofnanocuniandbinarynicuintonanoporousaaolayerforhighefficiencyblackspectrallyselectivecoating AT mfshaffei electrodepositionofnanocuniandbinarynicuintonanoporousaaolayerforhighefficiencyblackspectrallyselectivecoating AT ahmedmawadabouelata electrodepositionofnanocuniandbinarynicuintonanoporousaaolayerforhighefficiencyblackspectrallyselectivecoating AT monaaabdelfatah electrodepositionofnanocuniandbinarynicuintonanoporousaaolayerforhighefficiencyblackspectrallyselectivecoating |
_version_ |
1718418915762110464 |