A Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity

Abstract Autologous grafts, as the gold standard for vascular bypass procedures, associated with several problems that limit their usability, so tissue engineered vessels have been the subject of an increasing number of works. Nevertheless, gathering all of the desired characteristics of vascular sc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Masoud Zamani, Mona Khafaji, Mohammad Naji, Manouchehr Vossoughi, Iran Alemzadeh, Nooshin Haghighipour
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ced2e15bb1a6466d99c60c1888ad6821
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Autologous grafts, as the gold standard for vascular bypass procedures, associated with several problems that limit their usability, so tissue engineered vessels have been the subject of an increasing number of works. Nevertheless, gathering all of the desired characteristics of vascular scaffolds in the same construct has been a big challenge for scientists. Herein, a composite silk-based vascular scaffold (CSVS) was proposed to consider all the mechanical, structural and biological requirements of a small-diameter vascular scaffold. The scaffold’s lumen composed of braided silk fiber-reinforced silk fibroin (SF) sponge covalently heparinized (H-CSVS) using Hydroxy-Iron Complexes (HICs) as linkers. The highly porous SF external layer with pores above 60 μm was obtained by lyophilization. Silk fibers were fully embedded in scaffold’s wall with no delamination. The H-CSVS exhibited much higher burst pressure and suture retention strength than native vessels while comparable elastic modulus and compliance. H-CSVSs presented milder hemolysis in vitro and significant calcification resistance in subcutaneous implantation compared to non-heparinized ones. The in vitro antithrombogenic activity was sustained for over 12 weeks. The cytocompatibility was approved using endothelial cells (ECs) and vascular smooth muscle cells (SMCs) in vitro. Therefore, H-CSVS demonstrates a promising candidate for engineering of small-diameter vessels.