A Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity
Abstract Autologous grafts, as the gold standard for vascular bypass procedures, associated with several problems that limit their usability, so tissue engineered vessels have been the subject of an increasing number of works. Nevertheless, gathering all of the desired characteristics of vascular sc...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ced2e15bb1a6466d99c60c1888ad6821 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ced2e15bb1a6466d99c60c1888ad6821 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ced2e15bb1a6466d99c60c1888ad68212021-12-02T16:06:04ZA Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity10.1038/s41598-017-04510-12045-2322https://doaj.org/article/ced2e15bb1a6466d99c60c1888ad68212017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04510-1https://doaj.org/toc/2045-2322Abstract Autologous grafts, as the gold standard for vascular bypass procedures, associated with several problems that limit their usability, so tissue engineered vessels have been the subject of an increasing number of works. Nevertheless, gathering all of the desired characteristics of vascular scaffolds in the same construct has been a big challenge for scientists. Herein, a composite silk-based vascular scaffold (CSVS) was proposed to consider all the mechanical, structural and biological requirements of a small-diameter vascular scaffold. The scaffold’s lumen composed of braided silk fiber-reinforced silk fibroin (SF) sponge covalently heparinized (H-CSVS) using Hydroxy-Iron Complexes (HICs) as linkers. The highly porous SF external layer with pores above 60 μm was obtained by lyophilization. Silk fibers were fully embedded in scaffold’s wall with no delamination. The H-CSVS exhibited much higher burst pressure and suture retention strength than native vessels while comparable elastic modulus and compliance. H-CSVSs presented milder hemolysis in vitro and significant calcification resistance in subcutaneous implantation compared to non-heparinized ones. The in vitro antithrombogenic activity was sustained for over 12 weeks. The cytocompatibility was approved using endothelial cells (ECs) and vascular smooth muscle cells (SMCs) in vitro. Therefore, H-CSVS demonstrates a promising candidate for engineering of small-diameter vessels.Masoud ZamaniMona KhafajiMohammad NajiManouchehr VossoughiIran AlemzadehNooshin HaghighipourNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Masoud Zamani Mona Khafaji Mohammad Naji Manouchehr Vossoughi Iran Alemzadeh Nooshin Haghighipour A Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity |
description |
Abstract Autologous grafts, as the gold standard for vascular bypass procedures, associated with several problems that limit their usability, so tissue engineered vessels have been the subject of an increasing number of works. Nevertheless, gathering all of the desired characteristics of vascular scaffolds in the same construct has been a big challenge for scientists. Herein, a composite silk-based vascular scaffold (CSVS) was proposed to consider all the mechanical, structural and biological requirements of a small-diameter vascular scaffold. The scaffold’s lumen composed of braided silk fiber-reinforced silk fibroin (SF) sponge covalently heparinized (H-CSVS) using Hydroxy-Iron Complexes (HICs) as linkers. The highly porous SF external layer with pores above 60 μm was obtained by lyophilization. Silk fibers were fully embedded in scaffold’s wall with no delamination. The H-CSVS exhibited much higher burst pressure and suture retention strength than native vessels while comparable elastic modulus and compliance. H-CSVSs presented milder hemolysis in vitro and significant calcification resistance in subcutaneous implantation compared to non-heparinized ones. The in vitro antithrombogenic activity was sustained for over 12 weeks. The cytocompatibility was approved using endothelial cells (ECs) and vascular smooth muscle cells (SMCs) in vitro. Therefore, H-CSVS demonstrates a promising candidate for engineering of small-diameter vessels. |
format |
article |
author |
Masoud Zamani Mona Khafaji Mohammad Naji Manouchehr Vossoughi Iran Alemzadeh Nooshin Haghighipour |
author_facet |
Masoud Zamani Mona Khafaji Mohammad Naji Manouchehr Vossoughi Iran Alemzadeh Nooshin Haghighipour |
author_sort |
Masoud Zamani |
title |
A Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity |
title_short |
A Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity |
title_full |
A Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity |
title_fullStr |
A Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity |
title_full_unstemmed |
A Biomimetic Heparinized Composite Silk-Based Vascular Scaffold with sustained Antithrombogenicity |
title_sort |
biomimetic heparinized composite silk-based vascular scaffold with sustained antithrombogenicity |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/ced2e15bb1a6466d99c60c1888ad6821 |
work_keys_str_mv |
AT masoudzamani abiomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT monakhafaji abiomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT mohammadnaji abiomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT manouchehrvossoughi abiomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT iranalemzadeh abiomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT nooshinhaghighipour abiomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT masoudzamani biomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT monakhafaji biomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT mohammadnaji biomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT manouchehrvossoughi biomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT iranalemzadeh biomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity AT nooshinhaghighipour biomimeticheparinizedcompositesilkbasedvascularscaffoldwithsustainedantithrombogenicity |
_version_ |
1718385115241906176 |