Multi‐view facial action unit detection via deep feature enhancement

Abstract Multi‐view facial action unit (AU) analysis has been a challenging research topic due to multiple disturbing variables, including subject identity biases, variational facial action unit intensities, facial occlusions and non‐frontal head‐poses. A deep feature enhancement (DFE) framework is...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chuangao Tang, Cheng Lu, Wenming Zheng, Yuan Zong, Sunan Li
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/ced6bbb8b8f949f39138f41bc36cdb20
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ced6bbb8b8f949f39138f41bc36cdb20
record_format dspace
spelling oai:doaj.org-article:ced6bbb8b8f949f39138f41bc36cdb202021-12-03T08:34:31ZMulti‐view facial action unit detection via deep feature enhancement1350-911X0013-519410.1049/ell2.12322https://doaj.org/article/ced6bbb8b8f949f39138f41bc36cdb202021-12-01T00:00:00Zhttps://doi.org/10.1049/ell2.12322https://doaj.org/toc/0013-5194https://doaj.org/toc/1350-911XAbstract Multi‐view facial action unit (AU) analysis has been a challenging research topic due to multiple disturbing variables, including subject identity biases, variational facial action unit intensities, facial occlusions and non‐frontal head‐poses. A deep feature enhancement (DFE) framework is presented to tackle some of these coupled complex disturbing variables for multi‐view facial action unit detection. The authors' DFE framework is a novel end‐to‐end three‐stage feature learning model with taking subject identity biases, dynamic facial changes and head‐pose into consideration. It contains three feature enhancement modules, including coarse‐grained local and holistic spatial feature learning (LHSF), spatio‐temporal feature learning (STF) and head‐pose feature disentanglement (FD). Experimental results show that the proposed method achieved state‐of‐the‐art recognition performance on the FERA2017 dataset. The code is released at http://aip.seu.edu.cn/cgtang/.Chuangao TangCheng LuWenming ZhengYuan ZongSunan LiWileyarticleElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENElectronics Letters, Vol 57, Iss 25, Pp 970-972 (2021)
institution DOAJ
collection DOAJ
language EN
topic Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Chuangao Tang
Cheng Lu
Wenming Zheng
Yuan Zong
Sunan Li
Multi‐view facial action unit detection via deep feature enhancement
description Abstract Multi‐view facial action unit (AU) analysis has been a challenging research topic due to multiple disturbing variables, including subject identity biases, variational facial action unit intensities, facial occlusions and non‐frontal head‐poses. A deep feature enhancement (DFE) framework is presented to tackle some of these coupled complex disturbing variables for multi‐view facial action unit detection. The authors' DFE framework is a novel end‐to‐end three‐stage feature learning model with taking subject identity biases, dynamic facial changes and head‐pose into consideration. It contains three feature enhancement modules, including coarse‐grained local and holistic spatial feature learning (LHSF), spatio‐temporal feature learning (STF) and head‐pose feature disentanglement (FD). Experimental results show that the proposed method achieved state‐of‐the‐art recognition performance on the FERA2017 dataset. The code is released at http://aip.seu.edu.cn/cgtang/.
format article
author Chuangao Tang
Cheng Lu
Wenming Zheng
Yuan Zong
Sunan Li
author_facet Chuangao Tang
Cheng Lu
Wenming Zheng
Yuan Zong
Sunan Li
author_sort Chuangao Tang
title Multi‐view facial action unit detection via deep feature enhancement
title_short Multi‐view facial action unit detection via deep feature enhancement
title_full Multi‐view facial action unit detection via deep feature enhancement
title_fullStr Multi‐view facial action unit detection via deep feature enhancement
title_full_unstemmed Multi‐view facial action unit detection via deep feature enhancement
title_sort multi‐view facial action unit detection via deep feature enhancement
publisher Wiley
publishDate 2021
url https://doaj.org/article/ced6bbb8b8f949f39138f41bc36cdb20
work_keys_str_mv AT chuangaotang multiviewfacialactionunitdetectionviadeepfeatureenhancement
AT chenglu multiviewfacialactionunitdetectionviadeepfeatureenhancement
AT wenmingzheng multiviewfacialactionunitdetectionviadeepfeatureenhancement
AT yuanzong multiviewfacialactionunitdetectionviadeepfeatureenhancement
AT sunanli multiviewfacialactionunitdetectionviadeepfeatureenhancement
_version_ 1718373417361604608