A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use

Green Information Systems in general, and footprint calculators in particular, are promising feedback tools to assist people in adopting sustainable behaviour. Therefore, a Material Footprint model for use in an online footprint calculator was developed by identifying the most important predictors o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Johannes Buhl, Christa Liedtke, Jens Teubler, Sebastian Schuster, Katrin Bienge
Formato: article
Lenguaje:EN
Publicado: Taylor & Francis Group 2019
Materias:
Acceso en línea:https://doaj.org/article/ced993f4d4c0490f96569eacad55731e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ced993f4d4c0490f96569eacad55731e
record_format dspace
spelling oai:doaj.org-article:ced993f4d4c0490f96569eacad55731e2021-11-04T15:51:55ZA material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use2331-191610.1080/23311916.2019.1616655https://doaj.org/article/ced993f4d4c0490f96569eacad55731e2019-01-01T00:00:00Zhttp://dx.doi.org/10.1080/23311916.2019.1616655https://doaj.org/toc/2331-1916Green Information Systems in general, and footprint calculators in particular, are promising feedback tools to assist people in adopting sustainable behaviour. Therefore, a Material Footprint model for use in an online footprint calculator was developed by identifying the most important predictors of the Material Footprint of the calculator’s users. By means of statistical learning, the analysis revealed that 22 of the 95 predictors identified accounted for 74% of the variance in Material Footprints. Ten predictors out of the 95, mainly from the mobility domain, were capable of showing a prediction accuracy of 61%. The authors conclude that 22 predictors from the areas of mobility, housing and nutrition, as well as sociodemographic information, accurately predict a person’s Material Footprint. The short and concise Material Footprint model may help developers and researchers to enhance their information systems with additional items while ensuring the data quality of such applications.Johannes BuhlChrista LiedtkeJens TeublerSebastian SchusterKatrin BiengeTaylor & Francis Grouparticlesustainable consumptionmachine learningdata miningonline surveyfeedbackEngineering (General). Civil engineering (General)TA1-2040ENCogent Engineering, Vol 6, Iss 1 (2019)
institution DOAJ
collection DOAJ
language EN
topic sustainable consumption
machine learning
data mining
online survey
feedback
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle sustainable consumption
machine learning
data mining
online survey
feedback
Engineering (General). Civil engineering (General)
TA1-2040
Johannes Buhl
Christa Liedtke
Jens Teubler
Sebastian Schuster
Katrin Bienge
A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use
description Green Information Systems in general, and footprint calculators in particular, are promising feedback tools to assist people in adopting sustainable behaviour. Therefore, a Material Footprint model for use in an online footprint calculator was developed by identifying the most important predictors of the Material Footprint of the calculator’s users. By means of statistical learning, the analysis revealed that 22 of the 95 predictors identified accounted for 74% of the variance in Material Footprints. Ten predictors out of the 95, mainly from the mobility domain, were capable of showing a prediction accuracy of 61%. The authors conclude that 22 predictors from the areas of mobility, housing and nutrition, as well as sociodemographic information, accurately predict a person’s Material Footprint. The short and concise Material Footprint model may help developers and researchers to enhance their information systems with additional items while ensuring the data quality of such applications.
format article
author Johannes Buhl
Christa Liedtke
Jens Teubler
Sebastian Schuster
Katrin Bienge
author_facet Johannes Buhl
Christa Liedtke
Jens Teubler
Sebastian Schuster
Katrin Bienge
author_sort Johannes Buhl
title A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use
title_short A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use
title_full A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use
title_fullStr A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use
title_full_unstemmed A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use
title_sort material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use
publisher Taylor & Francis Group
publishDate 2019
url https://doaj.org/article/ced993f4d4c0490f96569eacad55731e
work_keys_str_mv AT johannesbuhl amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
AT christaliedtke amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
AT jensteubler amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
AT sebastianschuster amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
AT katrinbienge amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
AT johannesbuhl materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
AT christaliedtke materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
AT jensteubler materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
AT sebastianschuster materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
AT katrinbienge materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse
_version_ 1718444740437868544