A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use
Green Information Systems in general, and footprint calculators in particular, are promising feedback tools to assist people in adopting sustainable behaviour. Therefore, a Material Footprint model for use in an online footprint calculator was developed by identifying the most important predictors o...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ced993f4d4c0490f96569eacad55731e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ced993f4d4c0490f96569eacad55731e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ced993f4d4c0490f96569eacad55731e2021-11-04T15:51:55ZA material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use2331-191610.1080/23311916.2019.1616655https://doaj.org/article/ced993f4d4c0490f96569eacad55731e2019-01-01T00:00:00Zhttp://dx.doi.org/10.1080/23311916.2019.1616655https://doaj.org/toc/2331-1916Green Information Systems in general, and footprint calculators in particular, are promising feedback tools to assist people in adopting sustainable behaviour. Therefore, a Material Footprint model for use in an online footprint calculator was developed by identifying the most important predictors of the Material Footprint of the calculator’s users. By means of statistical learning, the analysis revealed that 22 of the 95 predictors identified accounted for 74% of the variance in Material Footprints. Ten predictors out of the 95, mainly from the mobility domain, were capable of showing a prediction accuracy of 61%. The authors conclude that 22 predictors from the areas of mobility, housing and nutrition, as well as sociodemographic information, accurately predict a person’s Material Footprint. The short and concise Material Footprint model may help developers and researchers to enhance their information systems with additional items while ensuring the data quality of such applications.Johannes BuhlChrista LiedtkeJens TeublerSebastian SchusterKatrin BiengeTaylor & Francis Grouparticlesustainable consumptionmachine learningdata miningonline surveyfeedbackEngineering (General). Civil engineering (General)TA1-2040ENCogent Engineering, Vol 6, Iss 1 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
sustainable consumption machine learning data mining online survey feedback Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
sustainable consumption machine learning data mining online survey feedback Engineering (General). Civil engineering (General) TA1-2040 Johannes Buhl Christa Liedtke Jens Teubler Sebastian Schuster Katrin Bienge A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use |
description |
Green Information Systems in general, and footprint calculators in particular, are promising feedback tools to assist people in adopting sustainable behaviour. Therefore, a Material Footprint model for use in an online footprint calculator was developed by identifying the most important predictors of the Material Footprint of the calculator’s users. By means of statistical learning, the analysis revealed that 22 of the 95 predictors identified accounted for 74% of the variance in Material Footprints. Ten predictors out of the 95, mainly from the mobility domain, were capable of showing a prediction accuracy of 61%. The authors conclude that 22 predictors from the areas of mobility, housing and nutrition, as well as sociodemographic information, accurately predict a person’s Material Footprint. The short and concise Material Footprint model may help developers and researchers to enhance their information systems with additional items while ensuring the data quality of such applications. |
format |
article |
author |
Johannes Buhl Christa Liedtke Jens Teubler Sebastian Schuster Katrin Bienge |
author_facet |
Johannes Buhl Christa Liedtke Jens Teubler Sebastian Schuster Katrin Bienge |
author_sort |
Johannes Buhl |
title |
A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use |
title_short |
A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use |
title_full |
A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use |
title_fullStr |
A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use |
title_full_unstemmed |
A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use |
title_sort |
material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use |
publisher |
Taylor & Francis Group |
publishDate |
2019 |
url |
https://doaj.org/article/ced993f4d4c0490f96569eacad55731e |
work_keys_str_mv |
AT johannesbuhl amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse AT christaliedtke amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse AT jensteubler amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse AT sebastianschuster amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse AT katrinbienge amaterialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse AT johannesbuhl materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse AT christaliedtke materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse AT jensteubler materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse AT sebastianschuster materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse AT katrinbienge materialfootprintmodelforgreeninformationsystemsusingstatisticallearningtoidentifythepredictorsofnaturalresourceuse |
_version_ |
1718444740437868544 |