A material footprint model for green information systems – using statistical learning to identify the predictors of natural resource use
Green Information Systems in general, and footprint calculators in particular, are promising feedback tools to assist people in adopting sustainable behaviour. Therefore, a Material Footprint model for use in an online footprint calculator was developed by identifying the most important predictors o...
Guardado en:
Autores principales: | Johannes Buhl, Christa Liedtke, Jens Teubler, Sebastian Schuster, Katrin Bienge |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ced993f4d4c0490f96569eacad55731e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DeepUEP: Prediction of Urine Excretory Proteins Using Deep Learning
por: Wei Du, et al.
Publicado: (2020) -
A Low-Energy High-Density Capacitor-Less I&F Neuron Circuit Using Feedback FET Co-Integrated With CMOS
por: Min-Woo Kwon, et al.
Publicado: (2019) -
Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase Steels Using Machine Learning Techniques
por: Martin Müller, et al.
Publicado: (2021) -
Using optical fibers (OF) to control the stress-strain state of steel structures subject to fatigue failure
por: V. V. Yugay, et al.
Publicado: (2022) -
Investigation and Quantification of Carbon Footprint in Lagos Megacity
por: Abimbola Gbolahan Bola-Popoola, et al.
Publicado: (2019)