Probing leptogenesis and pre-BBN universe with gravitational waves spectral shapes
Abstract On the frequency-amplitude plane, Gravitational Waves (GWs) from cosmic strings show a flat plateau at higher frequencies due to the string loop dynamics in standard radiation dominated post-inflationary epoch. The spectrum may show an abrupt upward or a downward trend beyond a turning poin...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cedd0d2d8bf64e94a149d3d3432b384f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract On the frequency-amplitude plane, Gravitational Waves (GWs) from cosmic strings show a flat plateau at higher frequencies due to the string loop dynamics in standard radiation dominated post-inflationary epoch. The spectrum may show an abrupt upward or a downward trend beyond a turning point frequency f *, if the primordial dark age prior to the Big Bang Nucleosynthesis (BBN), exhibits non-standard cosmic histories. We argue that such a spectral break followed by a rising GW amplitude which is a consequence of a post-inflationary equation of state (ω > 1/3) stiffer than the radiation (ω = 1/3), could also be a strong hint of a leptogenesis in the seesaw model of neutrino masses. Dynamical generation of the right handed (RH) neutrino masses by a gauged U(1) symmetry breaking leads to the formation of a network of cosmic strings which emits stochastic GWs. A gravitational interaction of the lepton current by an operator of the form ∂ μ Rj μ — which can be generated in the seesaw model at the two-loop level through RH neutrino mediation, naturally seeks a stiffer equation of state to efficiently produce baryon asymmetry proportional to 1 − 3ω. We discuss how GWs with reasonably strong amplitudes complemented by a neutrino-less double beta decay signal could probe the onset of the most recent radiation domination and lightest RH neutrino mass at the intermediate scales. |
---|