Markov Chain Neighborhood Sparse Preserving Graph Embedding Based on Tensor Factorization for Batch Process Monitoring
If the three-dimension data of batch process are unfolded the two-dimension data, some important information would lose, and outliers such as noise would lead to poor monitoring results. Therefore, a Markov chain neighborhood sparse preserving graph embedding algorithm based on tensor factorization...
Guardado en:
Autores principales: | Xiaoqiang Zhao, Miao Mou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cede10b795c042ae865b956303eb1637 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Batch Process Monitoring with Dynamic-Static Joint Indicator Based on GSFA-GNPE
por: ZHAO Xiaoqiang, MOU Miao
Publicado: (2021) -
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Shanchen Pang, et al.
Publicado: (2021) -
Knowledge Graph Embedding Technology: A Review
por: SHU Shitai, LI Song+, HAO Xiaohong, ZHANG Liping
Publicado: (2021) -
Sparse Graph Learning Under Laplacian-Related Constraints
por: Jitendra K. Tugnait
Publicado: (2021) -
CE-Net: A Coordinate Embedding Network for Mismatching Removal
por: Shiyu Chen, et al.
Publicado: (2021)