DeepACSON automated segmentation of white matter in 3D electron microscopy
With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in la...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ceef10eba1c14eabaaaea963abe3d645 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ceef10eba1c14eabaaaea963abe3d645 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ceef10eba1c14eabaaaea963abe3d6452021-12-02T12:09:18ZDeepACSON automated segmentation of white matter in 3D electron microscopy10.1038/s42003-021-01699-w2399-3642https://doaj.org/article/ceef10eba1c14eabaaaea963abe3d6452021-02-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-01699-whttps://doaj.org/toc/2399-3642With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in large fields-of-view.Ali AbdollahzadehIlya BelevichEija JokitaloAlejandra SierraJussi TohkaNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Ali Abdollahzadeh Ilya Belevich Eija Jokitalo Alejandra Sierra Jussi Tohka DeepACSON automated segmentation of white matter in 3D electron microscopy |
description |
With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in large fields-of-view. |
format |
article |
author |
Ali Abdollahzadeh Ilya Belevich Eija Jokitalo Alejandra Sierra Jussi Tohka |
author_facet |
Ali Abdollahzadeh Ilya Belevich Eija Jokitalo Alejandra Sierra Jussi Tohka |
author_sort |
Ali Abdollahzadeh |
title |
DeepACSON automated segmentation of white matter in 3D electron microscopy |
title_short |
DeepACSON automated segmentation of white matter in 3D electron microscopy |
title_full |
DeepACSON automated segmentation of white matter in 3D electron microscopy |
title_fullStr |
DeepACSON automated segmentation of white matter in 3D electron microscopy |
title_full_unstemmed |
DeepACSON automated segmentation of white matter in 3D electron microscopy |
title_sort |
deepacson automated segmentation of white matter in 3d electron microscopy |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ceef10eba1c14eabaaaea963abe3d645 |
work_keys_str_mv |
AT aliabdollahzadeh deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy AT ilyabelevich deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy AT eijajokitalo deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy AT alejandrasierra deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy AT jussitohka deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy |
_version_ |
1718394716262760448 |