DeepACSON automated segmentation of white matter in 3D electron microscopy

With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in la...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ali Abdollahzadeh, Ilya Belevich, Eija Jokitalo, Alejandra Sierra, Jussi Tohka
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/ceef10eba1c14eabaaaea963abe3d645
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ceef10eba1c14eabaaaea963abe3d645
record_format dspace
spelling oai:doaj.org-article:ceef10eba1c14eabaaaea963abe3d6452021-12-02T12:09:18ZDeepACSON automated segmentation of white matter in 3D electron microscopy10.1038/s42003-021-01699-w2399-3642https://doaj.org/article/ceef10eba1c14eabaaaea963abe3d6452021-02-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-01699-whttps://doaj.org/toc/2399-3642With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in large fields-of-view.Ali AbdollahzadehIlya BelevichEija JokitaloAlejandra SierraJussi TohkaNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Ali Abdollahzadeh
Ilya Belevich
Eija Jokitalo
Alejandra Sierra
Jussi Tohka
DeepACSON automated segmentation of white matter in 3D electron microscopy
description With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in large fields-of-view.
format article
author Ali Abdollahzadeh
Ilya Belevich
Eija Jokitalo
Alejandra Sierra
Jussi Tohka
author_facet Ali Abdollahzadeh
Ilya Belevich
Eija Jokitalo
Alejandra Sierra
Jussi Tohka
author_sort Ali Abdollahzadeh
title DeepACSON automated segmentation of white matter in 3D electron microscopy
title_short DeepACSON automated segmentation of white matter in 3D electron microscopy
title_full DeepACSON automated segmentation of white matter in 3D electron microscopy
title_fullStr DeepACSON automated segmentation of white matter in 3D electron microscopy
title_full_unstemmed DeepACSON automated segmentation of white matter in 3D electron microscopy
title_sort deepacson automated segmentation of white matter in 3d electron microscopy
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ceef10eba1c14eabaaaea963abe3d645
work_keys_str_mv AT aliabdollahzadeh deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
AT ilyabelevich deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
AT eijajokitalo deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
AT alejandrasierra deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
AT jussitohka deepacsonautomatedsegmentationofwhitematterin3delectronmicroscopy
_version_ 1718394716262760448