DeepACSON automated segmentation of white matter in 3D electron microscopy
With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in la...
Guardado en:
Autores principales: | Ali Abdollahzadeh, Ilya Belevich, Eija Jokitalo, Alejandra Sierra, Jussi Tohka |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ceef10eba1c14eabaaaea963abe3d645 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities
por: Mohsen Ghafoorian, et al.
Publicado: (2017) -
Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images.
por: Anna Kreshuk, et al.
Publicado: (2011) -
White Matter and Gray Matter Segmentation in 4D Computed Tomography
por: Rashindra Manniesing, et al.
Publicado: (2017) -
Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System
por: Wei Shan, et al.
Publicado: (2021) -
Deep white matter in Huntington's disease.
por: Owen Phillips, et al.
Publicado: (2014)