Parallel‐in‐time‐and‐space electromagnetic transient simulation of multi‐terminal DC grids with device‐level switch modelling
Abstract The electromagnetic transient (EMT) simulation of multi‐terminal DC (MTDC) grids requires a detailed device‐level modular multilevel converter (MMC) model, which can have thousands of state variables and complex internal structures. The fast device‐level insulated gate bipolar transistor (I...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cf19ba4983ec4a7998a278597ae60de8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cf19ba4983ec4a7998a278597ae60de8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cf19ba4983ec4a7998a278597ae60de82021-12-02T14:01:23ZParallel‐in‐time‐and‐space electromagnetic transient simulation of multi‐terminal DC grids with device‐level switch modelling1751-86951751-868710.1049/gtd2.12285https://doaj.org/article/cf19ba4983ec4a7998a278597ae60de82022-01-01T00:00:00Zhttps://doi.org/10.1049/gtd2.12285https://doaj.org/toc/1751-8687https://doaj.org/toc/1751-8695Abstract The electromagnetic transient (EMT) simulation of multi‐terminal DC (MTDC) grids requires a detailed device‐level modular multilevel converter (MMC) model, which can have thousands of state variables and complex internal structures. The fast device‐level insulated gate bipolar transistor (IGBT) transient requires a very small time‐step, making the computational overhead prohibitive. Based on the analysis of the parallel‐in‐time (PiT) implementation of detailed modelled MMCs, this paper proposes a task‐based hybrid PiT algorithm to achieve high parallel efficiency and speed‐up of MMC with device‐level modelling. Moreover, a transmission line model(TLM)‐based parallel‐in‐time‐and‐space (PiT+PiS) method is proposed to connect PiT grids to conventional or other PiT grids and exploit the maximum parallelism. Simulation results show greater than 30× speed‐up and 60% parallel efficiency on a 48 cores computer for the hybrid PiT method in a 201‐level three‐phase MMC test case, and 20× speed‐up in the transient simulation of CIGRÉ B4 DC grid test system for the PiT+PiS method.Tianshi ChengNing LinTian LiangVenkata DinavahiWileyarticleDistribution or transmission of electric powerTK3001-3521Production of electric energy or power. Powerplants. Central stationsTK1001-1841ENIET Generation, Transmission & Distribution, Vol 16, Iss 1, Pp 149-162 (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Distribution or transmission of electric power TK3001-3521 Production of electric energy or power. Powerplants. Central stations TK1001-1841 |
spellingShingle |
Distribution or transmission of electric power TK3001-3521 Production of electric energy or power. Powerplants. Central stations TK1001-1841 Tianshi Cheng Ning Lin Tian Liang Venkata Dinavahi Parallel‐in‐time‐and‐space electromagnetic transient simulation of multi‐terminal DC grids with device‐level switch modelling |
description |
Abstract The electromagnetic transient (EMT) simulation of multi‐terminal DC (MTDC) grids requires a detailed device‐level modular multilevel converter (MMC) model, which can have thousands of state variables and complex internal structures. The fast device‐level insulated gate bipolar transistor (IGBT) transient requires a very small time‐step, making the computational overhead prohibitive. Based on the analysis of the parallel‐in‐time (PiT) implementation of detailed modelled MMCs, this paper proposes a task‐based hybrid PiT algorithm to achieve high parallel efficiency and speed‐up of MMC with device‐level modelling. Moreover, a transmission line model(TLM)‐based parallel‐in‐time‐and‐space (PiT+PiS) method is proposed to connect PiT grids to conventional or other PiT grids and exploit the maximum parallelism. Simulation results show greater than 30× speed‐up and 60% parallel efficiency on a 48 cores computer for the hybrid PiT method in a 201‐level three‐phase MMC test case, and 20× speed‐up in the transient simulation of CIGRÉ B4 DC grid test system for the PiT+PiS method. |
format |
article |
author |
Tianshi Cheng Ning Lin Tian Liang Venkata Dinavahi |
author_facet |
Tianshi Cheng Ning Lin Tian Liang Venkata Dinavahi |
author_sort |
Tianshi Cheng |
title |
Parallel‐in‐time‐and‐space electromagnetic transient simulation of multi‐terminal DC grids with device‐level switch modelling |
title_short |
Parallel‐in‐time‐and‐space electromagnetic transient simulation of multi‐terminal DC grids with device‐level switch modelling |
title_full |
Parallel‐in‐time‐and‐space electromagnetic transient simulation of multi‐terminal DC grids with device‐level switch modelling |
title_fullStr |
Parallel‐in‐time‐and‐space electromagnetic transient simulation of multi‐terminal DC grids with device‐level switch modelling |
title_full_unstemmed |
Parallel‐in‐time‐and‐space electromagnetic transient simulation of multi‐terminal DC grids with device‐level switch modelling |
title_sort |
parallel‐in‐time‐and‐space electromagnetic transient simulation of multi‐terminal dc grids with device‐level switch modelling |
publisher |
Wiley |
publishDate |
2022 |
url |
https://doaj.org/article/cf19ba4983ec4a7998a278597ae60de8 |
work_keys_str_mv |
AT tianshicheng parallelintimeandspaceelectromagnetictransientsimulationofmultiterminaldcgridswithdevicelevelswitchmodelling AT ninglin parallelintimeandspaceelectromagnetictransientsimulationofmultiterminaldcgridswithdevicelevelswitchmodelling AT tianliang parallelintimeandspaceelectromagnetictransientsimulationofmultiterminaldcgridswithdevicelevelswitchmodelling AT venkatadinavahi parallelintimeandspaceelectromagnetictransientsimulationofmultiterminaldcgridswithdevicelevelswitchmodelling |
_version_ |
1718392170850811904 |