Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves.
We construct a recursive Bayesian smoother, termed EpiFilter, for estimating the effective reproduction number, R, from the incidence of an infectious disease in real time and retrospectively. Our approach borrows from Kalman filtering theory, is quick and easy to compute, generalisable, determinist...
Enregistré dans:
Auteur principal: | Kris V Parag |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cf1e29876a2d4e0a90b71d5341176ed3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On the reproduction number in epidemics
par: Milan Batista
Publié: (2021) -
Estimating spatiotemporally varying malaria reproduction numbers in a near elimination setting
par: Isobel Routledge, et autres
Publié: (2018) -
Heterogeneity and effectiveness analysis of COVID-19 prevention and control in major cities in China through time-varying reproduction number estimation
par: Qing Cheng, et autres
Publié: (2020) -
Epidemic spreading in modular time-varying networks
par: Matthieu Nadini, et autres
Publié: (2018) -
Tracking the time course of reproduction number and lockdown’s effect on human behaviour during SARS-CoV-2 epidemic: nonparametric estimation
par: G. Pillonetto, et autres
Publié: (2021)