Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro
Abstract The aim of this study was to investigate the difference in resistance mechanisms and fitness of Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE) mutants selected during the evolution of resistance under exposure to increasing ciprofloxacin concentrations in vitro. Mutations in qu...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cf32e22adad547a9954e937862871ba2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cf32e22adad547a9954e937862871ba2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cf32e22adad547a9954e937862871ba22021-12-02T12:32:17ZResistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro10.1038/s41598-017-09151-y2045-2322https://doaj.org/article/cf32e22adad547a9954e937862871ba22017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-09151-yhttps://doaj.org/toc/2045-2322Abstract The aim of this study was to investigate the difference in resistance mechanisms and fitness of Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE) mutants selected during the evolution of resistance under exposure to increasing ciprofloxacin concentrations in vitro. Mutations in quinolone target genes were screened by PCR. Phenotypic characterization included susceptibility testing by the broth dilution method, investigation of efflux activity and growth rate, and determination of the invasion of human intestinal epithelium cells in vitro. The two Salmonella serotypes exhibited differences in target gene mutations and efflux pump gene expression during the development of resistance. In the parental strains, ST had a competitive advantage over SE. During the development of resistance, initially, the SE strain was more competitive. However, once ciprofloxacin resistance was acquired, ST once again became the more competitive strain. In the absence of bile salts or at 0.1% bile, the growth rate of SE was initially greater than that of ST, but once ciprofloxacin resistance was acquired, ST had higher growth rates. ST strains showed decreased invasion of epithelial cells in 0.1% bile. These data indicate that ciprofloxacin-resistant ST strains are more competitive than ciprofloxacin-resistant SE strains.Chuan-Zhen ZhangSi-Qi RenMan-Xia ChangPin-Xian ChenHuan-Zhong DingHong-Xia JiangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Chuan-Zhen Zhang Si-Qi Ren Man-Xia Chang Pin-Xian Chen Huan-Zhong Ding Hong-Xia Jiang Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro |
description |
Abstract The aim of this study was to investigate the difference in resistance mechanisms and fitness of Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE) mutants selected during the evolution of resistance under exposure to increasing ciprofloxacin concentrations in vitro. Mutations in quinolone target genes were screened by PCR. Phenotypic characterization included susceptibility testing by the broth dilution method, investigation of efflux activity and growth rate, and determination of the invasion of human intestinal epithelium cells in vitro. The two Salmonella serotypes exhibited differences in target gene mutations and efflux pump gene expression during the development of resistance. In the parental strains, ST had a competitive advantage over SE. During the development of resistance, initially, the SE strain was more competitive. However, once ciprofloxacin resistance was acquired, ST once again became the more competitive strain. In the absence of bile salts or at 0.1% bile, the growth rate of SE was initially greater than that of ST, but once ciprofloxacin resistance was acquired, ST had higher growth rates. ST strains showed decreased invasion of epithelial cells in 0.1% bile. These data indicate that ciprofloxacin-resistant ST strains are more competitive than ciprofloxacin-resistant SE strains. |
format |
article |
author |
Chuan-Zhen Zhang Si-Qi Ren Man-Xia Chang Pin-Xian Chen Huan-Zhong Ding Hong-Xia Jiang |
author_facet |
Chuan-Zhen Zhang Si-Qi Ren Man-Xia Chang Pin-Xian Chen Huan-Zhong Ding Hong-Xia Jiang |
author_sort |
Chuan-Zhen Zhang |
title |
Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro |
title_short |
Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro |
title_full |
Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro |
title_fullStr |
Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro |
title_full_unstemmed |
Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro |
title_sort |
resistance mechanisms and fitness of salmonella typhimurium and salmonella enteritidis mutants evolved under selection with ciprofloxacin in vitro |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/cf32e22adad547a9954e937862871ba2 |
work_keys_str_mv |
AT chuanzhenzhang resistancemechanismsandfitnessofsalmonellatyphimuriumandsalmonellaenteritidismutantsevolvedunderselectionwithciprofloxacininvitro AT siqiren resistancemechanismsandfitnessofsalmonellatyphimuriumandsalmonellaenteritidismutantsevolvedunderselectionwithciprofloxacininvitro AT manxiachang resistancemechanismsandfitnessofsalmonellatyphimuriumandsalmonellaenteritidismutantsevolvedunderselectionwithciprofloxacininvitro AT pinxianchen resistancemechanismsandfitnessofsalmonellatyphimuriumandsalmonellaenteritidismutantsevolvedunderselectionwithciprofloxacininvitro AT huanzhongding resistancemechanismsandfitnessofsalmonellatyphimuriumandsalmonellaenteritidismutantsevolvedunderselectionwithciprofloxacininvitro AT hongxiajiang resistancemechanismsandfitnessofsalmonellatyphimuriumandsalmonellaenteritidismutantsevolvedunderselectionwithciprofloxacininvitro |
_version_ |
1718394122361896960 |