Hyperspectral Image Denoising Based on Nonconvex Low-Rank Tensor Approximation and lp Norm Regularization
A new nonconvex smooth rank approximation model is proposed to deal with HSI mixed noise in this paper. The low-rank matrix with Laplace function regularization is used to approximate the nuclear norm, and its performance is superior to the nuclear norm regularization. A new phase congruency lp norm...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cf4a0f7d0606480f834f1e7ee2f3b4ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | A new nonconvex smooth rank approximation model is proposed to deal with HSI mixed noise in this paper. The low-rank matrix with Laplace function regularization is used to approximate the nuclear norm, and its performance is superior to the nuclear norm regularization. A new phase congruency lp norm model is proposed to constrain the spatial structure information of hyperspectral images, to solve the phenomenon of “artificial artifact” in the process of hyperspectral image denoising. This model not only makes use of the low-rank characteristic of the hyperspectral image accurately, but also combines the structural information of all bands and the local information of the neighborhood, and then based on the Alternating Direction Method of Multipliers (ADMM), an optimization method for solving the model is proposed. The results of simulation and real data experiments show that the proposed method is more effective than the competcing state-of-the-art denoising methods. |
---|