Hyperspectral Image Denoising Based on Nonconvex Low-Rank Tensor Approximation and lp Norm Regularization
A new nonconvex smooth rank approximation model is proposed to deal with HSI mixed noise in this paper. The low-rank matrix with Laplace function regularization is used to approximate the nuclear norm, and its performance is superior to the nuclear norm regularization. A new phase congruency lp norm...
Guardado en:
Autores principales: | Li Bo, Luo Xuegang, Lv Junrui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cf4a0f7d0606480f834f1e7ee2f3b4ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Missing Data Reconstruction Based on Spectral k-Support Norm Minimization for NB-IoT Data
por: Luo Xuegang, et al.
Publicado: (2021) -
A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
por: Zhijun Luo, et al.
Publicado: (2021) -
Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
por: Jincheng Li, et al.
Publicado: (2021) -
Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising
por: Firas Ali
Publicado: (2007) -
Image Denoising Using Nonlocal Regularized Deep Image Prior
por: Zhonghua Xie, et al.
Publicado: (2021)