Hyperspectral Image Denoising Based on Nonconvex Low-Rank Tensor Approximation and lp Norm Regularization
A new nonconvex smooth rank approximation model is proposed to deal with HSI mixed noise in this paper. The low-rank matrix with Laplace function regularization is used to approximate the nuclear norm, and its performance is superior to the nuclear norm regularization. A new phase congruency lp norm...
Enregistré dans:
Auteurs principaux: | Li Bo, Luo Xuegang, Lv Junrui |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cf4a0f7d0606480f834f1e7ee2f3b4ac |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Missing Data Reconstruction Based on Spectral k-Support Norm Minimization for NB-IoT Data
par: Luo Xuegang, et autres
Publié: (2021) -
A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
par: Zhijun Luo, et autres
Publié: (2021) -
Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
par: Jincheng Li, et autres
Publié: (2021) -
Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising
par: Firas Ali
Publié: (2007) -
Image Denoising Using Nonlocal Regularized Deep Image Prior
par: Zhonghua Xie, et autres
Publié: (2021)