Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
Enregistré dans:
Auteurs principaux: | Sarah Quiñones, Aditya Goyal, Zia U. Ahmed |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cf4e8aa8eb974c0a9b5982daaeaa0872 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
par: Sarah Quiñones, et autres
Publié: (2021) -
Spatial prediction of flood-prone areas using geographically weighted regression
par: Jia Min Lin, et autres
Publié: (2021) -
Spatial distribution and geographical heterogeneity factors associated with poor consumption of foods rich in vitamin A among children age 6-23 months in Ethiopia: Geographical weighted regression analysis.
par: Sofonyas Abebaw Tiruneh, et autres
Publié: (2021) -
Identifying Surface Urban Heat Island Drivers and Their Spatial Heterogeneity in China’s 281 Cities: An Empirical Study Based on Multiscale Geographically Weighted Regression
par: Lu Niu, et autres
Publié: (2021) -
Untangling the evolutionary roots of lung cancer
par: Siddhartha Devarakonda, et autres
Publié: (2019)