On split regular BiHom-Poisson color algebras

The purpose of this paper is to introduce the class of split regular BiHom-Poisson color algebras, which can be considered as the natural extension of split regular BiHom-Poisson algebras and of split regular Poisson color algebras. Using the property of connections of roots for this kind of algebra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tao Yaling, Cao Yan
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/cf55e3f205214f1199be668ff021178d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cf55e3f205214f1199be668ff021178d
record_format dspace
spelling oai:doaj.org-article:cf55e3f205214f1199be668ff021178d2021-12-05T14:10:53ZOn split regular BiHom-Poisson color algebras2391-545510.1515/math-2021-0039https://doaj.org/article/cf55e3f205214f1199be668ff021178d2021-07-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0039https://doaj.org/toc/2391-5455The purpose of this paper is to introduce the class of split regular BiHom-Poisson color algebras, which can be considered as the natural extension of split regular BiHom-Poisson algebras and of split regular Poisson color algebras. Using the property of connections of roots for this kind of algebras, we prove that such a split regular BiHom-Poisson color algebra LL is of the form L=⊕[α]∈Λ/∼I[α]L={\oplus }_{\left[\alpha ]\in \Lambda \text{/} \sim }{I}_{\left[\alpha ]} with I[α]{I}_{\left[\alpha ]} a well described (graded) ideal of LL, satisfying [I[α],I[β]]+I[α]I[β]=0\left[{I}_{\left[\alpha ]},{I}_{\left[\beta ]}]+{I}_{\left[\alpha ]}{I}_{\left[\beta ]}=0 if [α]≠[β]\left[\alpha ]\ne \left[\beta ]. In particular, a necessary and sufficient condition for the simplicity of this algebra is determined, and it is shown that LL is the direct sum of the family of its simple (graded) ideals.Tao YalingCao YanDe Gruyterarticlebihom-lie color algebrabihom-poisson algebraroot spaceroot system17b7517a6017b2217b65MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 600-613 (2021)
institution DOAJ
collection DOAJ
language EN
topic bihom-lie color algebra
bihom-poisson algebra
root space
root system
17b75
17a60
17b22
17b65
Mathematics
QA1-939
spellingShingle bihom-lie color algebra
bihom-poisson algebra
root space
root system
17b75
17a60
17b22
17b65
Mathematics
QA1-939
Tao Yaling
Cao Yan
On split regular BiHom-Poisson color algebras
description The purpose of this paper is to introduce the class of split regular BiHom-Poisson color algebras, which can be considered as the natural extension of split regular BiHom-Poisson algebras and of split regular Poisson color algebras. Using the property of connections of roots for this kind of algebras, we prove that such a split regular BiHom-Poisson color algebra LL is of the form L=⊕[α]∈Λ/∼I[α]L={\oplus }_{\left[\alpha ]\in \Lambda \text{/} \sim }{I}_{\left[\alpha ]} with I[α]{I}_{\left[\alpha ]} a well described (graded) ideal of LL, satisfying [I[α],I[β]]+I[α]I[β]=0\left[{I}_{\left[\alpha ]},{I}_{\left[\beta ]}]+{I}_{\left[\alpha ]}{I}_{\left[\beta ]}=0 if [α]≠[β]\left[\alpha ]\ne \left[\beta ]. In particular, a necessary and sufficient condition for the simplicity of this algebra is determined, and it is shown that LL is the direct sum of the family of its simple (graded) ideals.
format article
author Tao Yaling
Cao Yan
author_facet Tao Yaling
Cao Yan
author_sort Tao Yaling
title On split regular BiHom-Poisson color algebras
title_short On split regular BiHom-Poisson color algebras
title_full On split regular BiHom-Poisson color algebras
title_fullStr On split regular BiHom-Poisson color algebras
title_full_unstemmed On split regular BiHom-Poisson color algebras
title_sort on split regular bihom-poisson color algebras
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/cf55e3f205214f1199be668ff021178d
work_keys_str_mv AT taoyaling onsplitregularbihompoissoncoloralgebras
AT caoyan onsplitregularbihompoissoncoloralgebras
_version_ 1718371628947079168