Genome assembly using quantum and quantum-inspired annealing
Abstract Recent advances in DNA sequencing open prospects to make whole-genome analysis rapid and reliable, which is promising for various applications including personalized medicine. However, existing techniques for de novo genome assembly, which is used for the analysis of genomic rearrangements,...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cf61a08b80104c41b8c32113e6ff983b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cf61a08b80104c41b8c32113e6ff983b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cf61a08b80104c41b8c32113e6ff983b2021-12-02T16:05:54ZGenome assembly using quantum and quantum-inspired annealing10.1038/s41598-021-88321-52045-2322https://doaj.org/article/cf61a08b80104c41b8c32113e6ff983b2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88321-5https://doaj.org/toc/2045-2322Abstract Recent advances in DNA sequencing open prospects to make whole-genome analysis rapid and reliable, which is promising for various applications including personalized medicine. However, existing techniques for de novo genome assembly, which is used for the analysis of genomic rearrangements, chromosome phasing, and reconstructing genomes without a reference, require solving tasks of high computational complexity. Here we demonstrate a method for solving genome assembly tasks with the use of quantum and quantum-inspired optimization techniques. Within this method, we present experimental results on genome assembly using quantum annealers both for simulated data and the $$\phi $$ ϕ X 174 bacteriophage. Our results pave a way for a significant increase in the efficiency of solving bioinformatics problems with the use of quantum computing technologies and, in particular, quantum annealing might be an effective method. We expect that the new generation of quantum annealing devices would outperform existing techniques for de novo genome assembly. To the best of our knowledge, this is the first experimental study of de novo genome assembly problems both for real and synthetic data on quantum annealing devices and quantum-inspired techniques.A. S. BoevA. S. RakitkoS. R. UsmanovA. N. KobzevaI. V. PopovV. V. IlinskyE. O. KiktenkoA. K. FedorovNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q A. S. Boev A. S. Rakitko S. R. Usmanov A. N. Kobzeva I. V. Popov V. V. Ilinsky E. O. Kiktenko A. K. Fedorov Genome assembly using quantum and quantum-inspired annealing |
description |
Abstract Recent advances in DNA sequencing open prospects to make whole-genome analysis rapid and reliable, which is promising for various applications including personalized medicine. However, existing techniques for de novo genome assembly, which is used for the analysis of genomic rearrangements, chromosome phasing, and reconstructing genomes without a reference, require solving tasks of high computational complexity. Here we demonstrate a method for solving genome assembly tasks with the use of quantum and quantum-inspired optimization techniques. Within this method, we present experimental results on genome assembly using quantum annealers both for simulated data and the $$\phi $$ ϕ X 174 bacteriophage. Our results pave a way for a significant increase in the efficiency of solving bioinformatics problems with the use of quantum computing technologies and, in particular, quantum annealing might be an effective method. We expect that the new generation of quantum annealing devices would outperform existing techniques for de novo genome assembly. To the best of our knowledge, this is the first experimental study of de novo genome assembly problems both for real and synthetic data on quantum annealing devices and quantum-inspired techniques. |
format |
article |
author |
A. S. Boev A. S. Rakitko S. R. Usmanov A. N. Kobzeva I. V. Popov V. V. Ilinsky E. O. Kiktenko A. K. Fedorov |
author_facet |
A. S. Boev A. S. Rakitko S. R. Usmanov A. N. Kobzeva I. V. Popov V. V. Ilinsky E. O. Kiktenko A. K. Fedorov |
author_sort |
A. S. Boev |
title |
Genome assembly using quantum and quantum-inspired annealing |
title_short |
Genome assembly using quantum and quantum-inspired annealing |
title_full |
Genome assembly using quantum and quantum-inspired annealing |
title_fullStr |
Genome assembly using quantum and quantum-inspired annealing |
title_full_unstemmed |
Genome assembly using quantum and quantum-inspired annealing |
title_sort |
genome assembly using quantum and quantum-inspired annealing |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/cf61a08b80104c41b8c32113e6ff983b |
work_keys_str_mv |
AT asboev genomeassemblyusingquantumandquantuminspiredannealing AT asrakitko genomeassemblyusingquantumandquantuminspiredannealing AT srusmanov genomeassemblyusingquantumandquantuminspiredannealing AT ankobzeva genomeassemblyusingquantumandquantuminspiredannealing AT ivpopov genomeassemblyusingquantumandquantuminspiredannealing AT vvilinsky genomeassemblyusingquantumandquantuminspiredannealing AT eokiktenko genomeassemblyusingquantumandquantuminspiredannealing AT akfedorov genomeassemblyusingquantumandquantuminspiredannealing |
_version_ |
1718385177128861696 |