Proteomic Approaches to Defining Remission and the Risk of Relapse in Rheumatoid Arthritis

ObjectivesPatients with Rheumatoid Arthritis (RA) are increasingly achieving stable disease remission, yet the mechanisms that govern ongoing clinical disease and subsequent risk of future flare are not well understood. We sought to identify serum proteomic alterations that dictate clinically import...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Liam J. O’Neil, Pingzhao Hu, Qian Liu, Md. Mohaiminul Islam, Victor Spicer, Juergen Rech, Axel Hueber, Vidyanand Anaparti, Irene Smolik, Hani S. El-Gabalawy, Georg Schett, John A. Wilkins
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/cf6534dc36e54628942187bed207ce42
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cf6534dc36e54628942187bed207ce42
record_format dspace
spelling oai:doaj.org-article:cf6534dc36e54628942187bed207ce422021-11-18T05:27:35ZProteomic Approaches to Defining Remission and the Risk of Relapse in Rheumatoid Arthritis1664-322410.3389/fimmu.2021.729681https://doaj.org/article/cf6534dc36e54628942187bed207ce422021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fimmu.2021.729681/fullhttps://doaj.org/toc/1664-3224ObjectivesPatients with Rheumatoid Arthritis (RA) are increasingly achieving stable disease remission, yet the mechanisms that govern ongoing clinical disease and subsequent risk of future flare are not well understood. We sought to identify serum proteomic alterations that dictate clinically important features of stable RA, and couple broad-based proteomics with machine learning to predict future flare.MethodsWe studied baseline serum samples from a cohort of stable RA patients (RETRO, n = 130) in clinical remission (DAS28<2.6) and quantified 1307 serum proteins using the SOMAscan platform. Unsupervised hierarchical clustering and supervised classification were applied to identify proteomic-driven clusters and model biomarkers that were associated with future disease flare after 12 months of follow-up and RA medication withdrawal. Network analysis was used to define pathways that were enriched in proteomic datasets.ResultsWe defined 4 proteomic clusters, with one cluster (Cluster 4) displaying a lower mean DAS28 score (p = 0.03), with DAS28 associating with humoral immune responses and complement activation. Clustering did not clearly predict future risk of flare, however an XGboost machine learning algorithm classified patients who relapsed with an AUC (area under the receiver operating characteristic curve) of 0.80 using only baseline serum proteomics.ConclusionsThe serum proteome provides a rich dataset to understand stable RA and its clinical heterogeneity. Combining proteomics and machine learning may enable prediction of future RA disease flare in patients with RA who aim to withdrawal therapy.Liam J. O’NeilLiam J. O’NeilPingzhao HuPingzhao HuQian LiuQian LiuMd. Mohaiminul IslamMd. Mohaiminul IslamVictor SpicerJuergen RechAxel HueberVidyanand AnapartiIrene SmolikHani S. El-GabalawyHani S. El-GabalawyGeorg SchettJohn A. WilkinsJohn A. WilkinsFrontiers Media S.A.articlerheumatoid arthritisdisease activityoutcomes researchtreatmentproteomicsImmunologic diseases. AllergyRC581-607ENFrontiers in Immunology, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic rheumatoid arthritis
disease activity
outcomes research
treatment
proteomics
Immunologic diseases. Allergy
RC581-607
spellingShingle rheumatoid arthritis
disease activity
outcomes research
treatment
proteomics
Immunologic diseases. Allergy
RC581-607
Liam J. O’Neil
Liam J. O’Neil
Pingzhao Hu
Pingzhao Hu
Qian Liu
Qian Liu
Md. Mohaiminul Islam
Md. Mohaiminul Islam
Victor Spicer
Juergen Rech
Axel Hueber
Vidyanand Anaparti
Irene Smolik
Hani S. El-Gabalawy
Hani S. El-Gabalawy
Georg Schett
John A. Wilkins
John A. Wilkins
Proteomic Approaches to Defining Remission and the Risk of Relapse in Rheumatoid Arthritis
description ObjectivesPatients with Rheumatoid Arthritis (RA) are increasingly achieving stable disease remission, yet the mechanisms that govern ongoing clinical disease and subsequent risk of future flare are not well understood. We sought to identify serum proteomic alterations that dictate clinically important features of stable RA, and couple broad-based proteomics with machine learning to predict future flare.MethodsWe studied baseline serum samples from a cohort of stable RA patients (RETRO, n = 130) in clinical remission (DAS28<2.6) and quantified 1307 serum proteins using the SOMAscan platform. Unsupervised hierarchical clustering and supervised classification were applied to identify proteomic-driven clusters and model biomarkers that were associated with future disease flare after 12 months of follow-up and RA medication withdrawal. Network analysis was used to define pathways that were enriched in proteomic datasets.ResultsWe defined 4 proteomic clusters, with one cluster (Cluster 4) displaying a lower mean DAS28 score (p = 0.03), with DAS28 associating with humoral immune responses and complement activation. Clustering did not clearly predict future risk of flare, however an XGboost machine learning algorithm classified patients who relapsed with an AUC (area under the receiver operating characteristic curve) of 0.80 using only baseline serum proteomics.ConclusionsThe serum proteome provides a rich dataset to understand stable RA and its clinical heterogeneity. Combining proteomics and machine learning may enable prediction of future RA disease flare in patients with RA who aim to withdrawal therapy.
format article
author Liam J. O’Neil
Liam J. O’Neil
Pingzhao Hu
Pingzhao Hu
Qian Liu
Qian Liu
Md. Mohaiminul Islam
Md. Mohaiminul Islam
Victor Spicer
Juergen Rech
Axel Hueber
Vidyanand Anaparti
Irene Smolik
Hani S. El-Gabalawy
Hani S. El-Gabalawy
Georg Schett
John A. Wilkins
John A. Wilkins
author_facet Liam J. O’Neil
Liam J. O’Neil
Pingzhao Hu
Pingzhao Hu
Qian Liu
Qian Liu
Md. Mohaiminul Islam
Md. Mohaiminul Islam
Victor Spicer
Juergen Rech
Axel Hueber
Vidyanand Anaparti
Irene Smolik
Hani S. El-Gabalawy
Hani S. El-Gabalawy
Georg Schett
John A. Wilkins
John A. Wilkins
author_sort Liam J. O’Neil
title Proteomic Approaches to Defining Remission and the Risk of Relapse in Rheumatoid Arthritis
title_short Proteomic Approaches to Defining Remission and the Risk of Relapse in Rheumatoid Arthritis
title_full Proteomic Approaches to Defining Remission and the Risk of Relapse in Rheumatoid Arthritis
title_fullStr Proteomic Approaches to Defining Remission and the Risk of Relapse in Rheumatoid Arthritis
title_full_unstemmed Proteomic Approaches to Defining Remission and the Risk of Relapse in Rheumatoid Arthritis
title_sort proteomic approaches to defining remission and the risk of relapse in rheumatoid arthritis
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/cf6534dc36e54628942187bed207ce42
work_keys_str_mv AT liamjoneil proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT liamjoneil proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT pingzhaohu proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT pingzhaohu proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT qianliu proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT qianliu proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT mdmohaiminulislam proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT mdmohaiminulislam proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT victorspicer proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT juergenrech proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT axelhueber proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT vidyanandanaparti proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT irenesmolik proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT haniselgabalawy proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT haniselgabalawy proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT georgschett proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT johnawilkins proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
AT johnawilkins proteomicapproachestodefiningremissionandtheriskofrelapseinrheumatoidarthritis
_version_ 1718424942068891648