Latest Inversion-Free Iterative Scheme for Solving a Pair of Nonlinear Matrix Equations
In this work, the following system of nonlinear matrix equations is considered, X1+A∗X1−1A+B∗X2−1B=I and X2+C∗X2−1C+D∗X1−1D=I, where A,B,C, and D are arbitrary n×n matrices and I is the identity matrix of order n. Some conditions for the existence of a positive-definite solution as well as the conve...
Guardado en:
Autores principales: | Sourav Shil, Hemant Kumar Nashine |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cf77865928df4dbebff9d499c160402d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Three-point iterative algorithm in the absence of the derivative for solving nonlinear equations and their basins of attraction
por: Mohamed S. M. Bahgat
Publicado: (2021) -
Approximating Solutions of Matrix Equations via Fixed Point Techniques
por: Rahul Shukla, et al.
Publicado: (2021) -
Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
por: Danfeng Wu, et al.
Publicado: (2021) -
On iterative techniques for estimating all roots of nonlinear equation and its system with application in differential equation
por: Mudassir Shams, et al.
Publicado: (2021) -
Aboodh Transform Iterative Method for Solving Fractional Partial Differential Equation with Mittag–Leffler Kernel
por: Michael A. Awuya, et al.
Publicado: (2021)