Surfaces with a family of nongeodesic biharmonic curves
The only surface whose level curves of the Gauss curvature are nongeodesic biharmonic curves and such that the gradient lines are geodesics is, up to local isometries, the revolution surface defined by Caddeo-Montaldo-Piu.
Guardado en:
Autor principal: | J. Monterde |
---|---|
Formato: | article |
Lenguaje: | EN FR IT |
Publicado: |
Sapienza Università Editrice
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cf7dfd1a2ddd416688501f5d6da6c577 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On velocity bimagnetic biharmonic particles with energy on Heisenberg space
por: Körpinar,Talat
Publicado: (2018) -
On a class of a Boundary value problems involving the p(x)-Biharmonic operator
por: Ourraoui,A.
Publicado: (2019) -
Pedal Curves of the Mixed-Type Curves in the Lorentz-Minkowski Plane
por: Xin Zhao, et al.
Publicado: (2021) -
Lines of Curvature for Log Aesthetic Surfaces Characteristics Investigation
por: R.U. Gobithaasan, et al.
Publicado: (2021) -
Boundary asymptotics of the relative Bergman kernel metric for hyperelliptic curves
por: Dong Robert Xin
Publicado: (2017)