Real-time detection of particleboard surface defects based on improved YOLOV5 target detection
Abstract Particleboard surface defect detection technology is of great significance to the automation of particleboard detection, but the current detection technology has disadvantages such as low accuracy and poor real-time performance. Therefore, this paper proposes an improved lightweight detecti...
Guardado en:
Autores principales: | Ziyu Zhao, Xiaoxia Yang, Yucheng Zhou, Qinqian Sun, Zhedong Ge, Dongfang Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cf87e4ec41e5488290b872ab9dbd4394 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real‐time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector
por: Wei Jia, et al.
Publicado: (2021) -
Improved YOLOv4-tiny network for real-time electronic component detection
por: Ce Guo, et al.
Publicado: (2021) -
YOT-Net: YOLOv3 Combined Triplet Loss Network for Copper Elbow Surface Defect Detection
por: Yuanqing Xian, et al.
Publicado: (2021) -
Object Detection Method for Grasping Robot Based on Improved YOLOv5
por: Qisong Song, et al.
Publicado: (2021) -
Tomato detection based on modified YOLOv3 framework
por: Mubashiru Olarewaju Lawal
Publicado: (2021)