Comparison of Autonomous AS-OCT Deep Learning Algorithm and Clinical Dry Eye Tests in Diagnosis of Dry Eye Disease
Collin Chase,1 Amr Elsawy,2 Taher Eleiwa,3 Eyup Ozcan,4 Mohamed Tolba,2 Mohamed Abou Shousha2 1Morsani College of Medicine, University of South Florida, Tampa, FL, USA; 2Cornea Department, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; 3Department of Oph...
Guardado en:
Autores principales: | Chase C, Elsawy A, Eleiwa T, Ozcan E, Tolba M, Abou Shousha M |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cf9b8e9baa154d3f9f79a9b37139f575 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of Corneal Epithelial Thickness and Dry Eye Disease Tests in Thalassemic Adolescents
por: Ebeid WM, et al.
Publicado: (2021) -
Making the diagnosis of Sjögren’s syndrome in patients with dry eye
por: Beckman KA, et al.
Publicado: (2015) -
The development of a reference database with the Topcon 3D OCT-1 Maestro
por: Chaglasian M, et al.
Publicado: (2018) -
A Comparison of Efficacy and Safety of Two Lipid-Based Lubricant Eye Drops for the Management of Evaporative Dry Eye Disease
por: Jerkins G, et al.
Publicado: (2020) -
Combination of hyaluronic acid, carmellose, and osmoprotectants for the treatment of dry eye disease
por: Mateo Orobia AJ, et al.
Publicado: (2018)