Identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways

Abstract Brown adipose tissue function declines during aging and may contribute to the onset of metabolic disorders such as diabetes and obesity. Only limited understanding of the mechanisms leading to the metabolic impairment of brown adipocytes during aging exists. To this end, interscapular brown...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carola Mancini, Sabrina Gohlke, Francisco Garcia-Carrizo, Vyacheslav Zagoriy, Heike Stephanowitz, Tim J. Schulz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/cf9ff986f53a492da2a296b62f9b012a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cf9ff986f53a492da2a296b62f9b012a
record_format dspace
spelling oai:doaj.org-article:cf9ff986f53a492da2a296b62f9b012a2021-12-02T18:37:11ZIdentification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways10.1038/s41598-021-99362-12045-2322https://doaj.org/article/cf9ff986f53a492da2a296b62f9b012a2021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-99362-1https://doaj.org/toc/2045-2322Abstract Brown adipose tissue function declines during aging and may contribute to the onset of metabolic disorders such as diabetes and obesity. Only limited understanding of the mechanisms leading to the metabolic impairment of brown adipocytes during aging exists. To this end, interscapular brown adipose tissue samples were collected from young and aged mice for quantification of differential gene expression and metabolite levels. To identify potential processes involved in brown adipocyte dysfunction, metabolite concentrations were correlated to aging and significantly changed candidates were subsequently integrated with a non-targeted proteomic dataset and gene expression analyses. Our results include novel age-dependent correlations of polar intermediates in brown adipose tissue. Identified metabolites clustered around three biochemical processes, specifically energy metabolism, nucleotide metabolism and vitamin metabolism. One mechanism of brown adipose tissue dysfunction may be linked to mast cell activity, and we identify increased histamine levels in aged brown fat as a potential biomarker. In addition, alterations of genes involved in synthesis and degradation of many metabolites were mainly observed in the mature brown adipocyte fraction as opposed to the stromal vascular fraction. These findings may provide novel insights on the molecular mechanisms contributing to the impaired thermogenesis of brown adipocytes during aging.Carola ManciniSabrina GohlkeFrancisco Garcia-CarrizoVyacheslav ZagoriyHeike StephanowitzTim J. SchulzNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Carola Mancini
Sabrina Gohlke
Francisco Garcia-Carrizo
Vyacheslav Zagoriy
Heike Stephanowitz
Tim J. Schulz
Identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways
description Abstract Brown adipose tissue function declines during aging and may contribute to the onset of metabolic disorders such as diabetes and obesity. Only limited understanding of the mechanisms leading to the metabolic impairment of brown adipocytes during aging exists. To this end, interscapular brown adipose tissue samples were collected from young and aged mice for quantification of differential gene expression and metabolite levels. To identify potential processes involved in brown adipocyte dysfunction, metabolite concentrations were correlated to aging and significantly changed candidates were subsequently integrated with a non-targeted proteomic dataset and gene expression analyses. Our results include novel age-dependent correlations of polar intermediates in brown adipose tissue. Identified metabolites clustered around three biochemical processes, specifically energy metabolism, nucleotide metabolism and vitamin metabolism. One mechanism of brown adipose tissue dysfunction may be linked to mast cell activity, and we identify increased histamine levels in aged brown fat as a potential biomarker. In addition, alterations of genes involved in synthesis and degradation of many metabolites were mainly observed in the mature brown adipocyte fraction as opposed to the stromal vascular fraction. These findings may provide novel insights on the molecular mechanisms contributing to the impaired thermogenesis of brown adipocytes during aging.
format article
author Carola Mancini
Sabrina Gohlke
Francisco Garcia-Carrizo
Vyacheslav Zagoriy
Heike Stephanowitz
Tim J. Schulz
author_facet Carola Mancini
Sabrina Gohlke
Francisco Garcia-Carrizo
Vyacheslav Zagoriy
Heike Stephanowitz
Tim J. Schulz
author_sort Carola Mancini
title Identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways
title_short Identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways
title_full Identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways
title_fullStr Identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways
title_full_unstemmed Identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways
title_sort identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/cf9ff986f53a492da2a296b62f9b012a
work_keys_str_mv AT carolamancini identificationofbiomarkersofbrownadiposetissueaginghighlightstheroleofdysfunctionalenergyandnucleotidemetabolismpathways
AT sabrinagohlke identificationofbiomarkersofbrownadiposetissueaginghighlightstheroleofdysfunctionalenergyandnucleotidemetabolismpathways
AT franciscogarciacarrizo identificationofbiomarkersofbrownadiposetissueaginghighlightstheroleofdysfunctionalenergyandnucleotidemetabolismpathways
AT vyacheslavzagoriy identificationofbiomarkersofbrownadiposetissueaginghighlightstheroleofdysfunctionalenergyandnucleotidemetabolismpathways
AT heikestephanowitz identificationofbiomarkersofbrownadiposetissueaginghighlightstheroleofdysfunctionalenergyandnucleotidemetabolismpathways
AT timjschulz identificationofbiomarkersofbrownadiposetissueaginghighlightstheroleofdysfunctionalenergyandnucleotidemetabolismpathways
_version_ 1718377826903654400